Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Sammendrag
Øksnevad vidaregåande skole har bedt NIBIO om en gjennomgang av forutsetninger og planer for håndtering av hestemøkk og annet organisk avfall på gården. Denne rapporten beskriver muligheter for behandling av hestemøkk som skapes på skolen, og skisserer driftsregime for et komposteringsanlegg.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Seyedbehnam Hashemi Linn Solli Roald Aasen Jacob Joseph Lamb Svein Jarle Horn Kristian Myklebust LienSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Claire Coutris Erik J. Joner Cecilie Singdahl-Larsen Ana Catarina Almeida Muhammad Umar Sissel Brit Ranneklev Cecilia AskhamSammendrag
Microplastics ending up in nature as a result of end-of-life processes for plastic packaging is a serious environmental concern, and was addressed in the Packnoplast project through sampling at three sites: one biogas facility in Norway and two thermoplastic recycling plants, one in Norway and one in The Netherlands. The amounts of microplastics ending up in soil from biogas digestate was estimated to represent 0.4-2 mg/kg soil per year if 6 t/daa of biogas digestate is used as fertilizer. Food packaging is estimated to represent 75% of this. The amounts of microplastics measured are significant, but too small to affect soil properties even on a time-scale of decades. The risk of adverse effects on soil quality, plant growth or soil organisms seem very low at the current predicted rates of plastic inputs to soil. Since plastics are virtually non-degradable, they are still prone to accumulate in soil, and waste streams recycled to soil need to address and prevent plastic contamination even better than today. Thermoplastic recycling plants are handling large amounts of plastic, and during processes in the plant, microplastics are generated. Concentrations of microplastic particles varied from 7 to 51 particles per lite rin the effluent water from the two plants. Discharges of effluent water are often through the sewer system and/or into a water body. Today regulations regarding discharges of microplastics are missing. Sand filter treatment of the effluent water was a promising treatment technique to remove the microplastics. Background concentrations of microplastics, comparable to pristine areas, were found in blue mussels sampled outside the thermoplastic recycling plant in Norway. Knowledge about the risk imposed by microplastics to the aquatic environment is today not known.
Sammendrag
Grønne tak tas i bruk i økende grad for å møte utfordringene med ekstrem nedbør og håndtering av overvann i byer og tettsteder. Biokull er et kortreist og karbonnegativt materiale som kan brukes som en komponent i jord til grønne tak. Her er noen erfaringer NIBIO har gjort på dette området gjennom forskning og utprøving av ulike konsepter.
Sammendrag
Green roofs are increasingly being used to meet the challenges of extreme rainfall and surface water management in cities and towns. Biochar is a locally sourced and carbon-negative material that can be used as a substrate component for green roofs. Here are some experiences NIBIO has gained in this area through research and testing of various concept.
Sammendrag
Three strains of chlorophyte microalgae indigenous in Norway were studied regarding their potential for nutrient removal and resource recovery from wastewater. The nutrient uptake, growth, and cell composition (total proteins and carbohydrates) were monitored under a controlled batch environment for 14 days. Additionally, the fatty acids were analyzed at the end of the study. The fastest nutrient removal was achieved by Lobochlamys segnis F12 that used up NH4+ (28 mg L-1) and PO43- (15 mg L-1) after 4 days. Similar PO43- uptake was achieved by Tetradesmus wisconsinensis H1 while its NH4+ uptake took 2 days longer. Both strains showed a higher specific growth rate (1.1 day-1) than Klebsormidium flaccidum NIVA-CHL80 (0.55 day-1). The highest biomass (1.276 ± 21 mg L-1) and carbohydrates content (40%) were achieved by T. wisconsinensis. K. flaccidum was characterized by superior protein content (53 ± 4%). In terms of total fatty acids production both K. flaccidum and L. segnis were favored (184 ± 6 and 193 ± 12 mg g-1 dry cells), especially with their high polyunsaturated fatty acid content (82 and 67%, respectively). The fatty acids of K. flaccidum consisted mainly C18:2 n-6 (73% of the total). L. segnis had a preferable n3 to n6 ratio (1.3) in their fatty acid profile. The proteins and carbohydrates content changed in all strains depending on the growth stage. Therefore, resource recovery scenarios could be further optimized for a specific cell component production combined with an appropriate strategy for nutrient removal from wastewater.
Sammendrag
Det er ikke registrert sammendrag