Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

Cloudberry (Rubus chamaemorus L.) is a dioecious perennial plant of the Rosaceae family with a circumpolar distribution. cloudberry fruit consist of up to about 30 drupes, each with a single seed, covered by a hard endocarp. The ripe berry is orange or yellow, soft and high in vitamin C. both the ratio of female plants, number of pollinating insects and fruit development is much influenced by climatic factors causing large variation in annual yields. cloudberry is mainly collected from natural stands, but there is an increased interest in cultivation and commercial cultivation tecchniques. Cultivation and plant breeing on cloudberry have been carried out for several years at Bioforsk nord, and has resulted in the release of four commercial varieties, including two male (Apollen and Apollto) and two female (Fjellgull and Fjordgull) varieties. These varieties have been selected for increased productivity by using profuse flowering, berry size and shooting capacity as criterions. In addition, the female varieties have been selected for the number of pistils per flower and the male varieties by the number of stamens per flower. Currently a new group of clones are evaluated with the aim of finding new cultivars for release. The clones are collected from different parts of Norway, as well as from England and Spitsbergen. Preliminary results from harvesting 2005, 2006, 2007 and 2008 indicate good production potential for some of the tested clones. There are two main aproaches for cloudberry cultivation; exploitation of natural cloudberry stands and the second is based on planting of improved plant material. Both approaches require fertilization and soil cultivation. Methods for propagation of material have been developed as well as a guide for greenhouse production of cloudberries. Recently attempts to cultivate natural stands of European blueberry (Vaccinium myrtillus) have been initiated. The fields are both on forest soil and on cultivated soil and are situated in North- Mid- and South-Norway.

Til dokument

Sammendrag

In this study we investigated the interaction between temperature and genotype on fruit development and levels of total phenols and anthocyanins in cloudberry. The experiment was done in a phytotron using one female (‘Fjellgull") and one hermaphroditic (‘Nyby") cultivar. Plants were grown at 9, 12, 15 and 18°C in 24-h photoperiod. The female cultivars were pollinated with pollen from a male (‘Apollen") clone and from the hermaphrodite clone. Parthenocarpic fruit development was induced by gibberellic acid (GA3). Ripe berries were frozen individually at -80°C and stored until analyses. There was a linear, double logarithmic relationship between temperature and number of days from pollination/GA3-treatment to ripening. ‘Fjellgull" had significantly larger berries than ‘Nyby", and the largest berries were obtained at 12 and 9°C. Pollen clone did not have a significant effect on berry size. GA3 induced parthenogenesis in ‘Fjellgull" and partial parthenogenesis in ‘Nyby". In ‘Fjellgull", the parthenocarpic berries were comparable to pollinated ones at low temperatures, but at 18°C their development was restricted. The level of total anthocyanins was significantly higher in ‘Fjellgull" than in ‘Nyby", and these levels were significantly enhanced at 9 and 12°C compared to higher temperatures. Levels of total phenolic compounds were not significantly affected. In conclusion, the present results indicate that low temperature is favourable both for size and quality of cloudberries.

Til dokument

Sammendrag

Earliness, fruit yield and quality of six annual-fruiting raspberry (Rubus idaeus L.) cultivars were tested under protected cultivation in a cool Nordic environment. After raising plants for 5 weeks in greenhouses with average mean temperatures of 20 degrees C, 22 degrees C, or 26 degrees C, the plants were cropped in an open plastic tunnel at latitude 61 degrees N. The highest yielding cultivars were 'Autumn Bliss' and 'Polka', with 640 g plant(-1). Overall, the most promising cultivar was 'Polka' which combined high yield with large fruit of good flavour and firmness. In earliness, 'Polka' was surpassed only by 'Autumn Bliss', which confirmed its position as the earliest commercial annual-fruiting cultivar. However, 'Autumn Bliss' had soft fruits with little flavour and a short shelf-life, which greatly reduced the potential of the cultivar for the fresh fruit market. The later ripening cultivar 'Erika' did not complete its crop under these conditions, but its large unrealised yield potential and good fruit quality rendered it extremely promising for environments with a longer growing season. 'Sugana' was late, with low yields and poor fruit quality, while 'Marcela' did not yield enough fruit to be of interest under the present conditions. High temperatures during the 5-week raising period generally advanced flowering and fruit ripening in all cultivars, with the notable exception of 'Autumn Treasure' in which flowering was suppressed and strongly delayed by high temperature. Under the present conditions, there was a highly positive correlation between earliness and fruit yield. Regression analyses identified a low number of dormant buds as the single most important component of plant architecture associated with high fruit yield, accounting for 47% of the total variation.