Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Isabella Righini Bram Vanthoor Michel Verheul Muhammad Naseer Henk Maessen Tomas Persson I. Tsafaras Cecilia StanghelliniSammendrag
Det er ikke registrert sammendrag
Forfattere
Luc Graamans Isabella Righini Bram Vanthoor Michel Verheul Muhammad Naseer Henk Maessen Tomas Persson I. Tsafaras Cecilia StanghelliniSammendrag
Det er ikke registrert sammendrag
Forfattere
Priyanka Trivedi Nga Nguyen Anne Linn Hykkerud Hely Häggman Inger Martinussen Laura Jaakola Katja KarppinenSammendrag
The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.
Forfattere
Anne Linn Hykkerud Inger Martinussen Laura Jaakola Katja Karppinen Nga Nguyet Priyanka Trivedi Päivi Aro Taina Vuorela Helena Aohla Anne Poutiainen Joffe Roberts Pupure Liva Petri Sundqvist Juha Väänänen Remes Janne Hely HäggmanSammendrag
There is a large industrial demand for wax. The market is dominated by synthetic waxes. In contrast to the synthetic wax natural waxes are renewable and thus contribute to sustainalbe processes and reduced carbon emission. In Scandinavia side streams from Wild berries is an interesting candidate for wax production.
Sammendrag
Numerous species of wild berries are abundant in the Nordic forests, mountains and peat lands. They ripen throughout the early summer until late autumn. Both lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), that are among the most picked wild berries, are characteristic field layer species in boreal forests. Other species that have potential of better exploitation are cloudberry (Rubus chamaemorus), crowberry (Empeterum nigrum), bog blueberry (Vaccinium uliginosum), arctic bramble (Rubus arcticus), wild strawberries/woodland strawberries (Fragaria vesca) and wild raspberries (Rubus idaeus). Here we present a mini-review about properties and potentials of Nordic wild berries.
Sammendrag
BACKGROUND: Interest in the wild berries of dwarf shrubs (wild berries) is increasing. Therefore, an update is important regarding how these species react to and interact with different climatic factors, and on how the predicted climatic changes will affect their distribution, growth and content of compounds affecting health. OBJECTIVE: To systemize knowledge of the Ericaceae and Empetraceae wild berry species. METHODS: A review of literature covering the above topics. CONCLUSION: This review includes five wild berry species and their subspecies: Vaccinium myrtillus, Vaccinium vitis-idaea, Vaccinium uliginosum, Vaccinium oxycoccos with ssp. microcarpon, and Empetrum nigrum with ssp. nigrum, hermaphroditum and japonicum. They have been and still are collected in the wild, by local households and industry. The berries have high content of biological compounds of interest for human health. Despite the increasing interest in and demand for these wild berries, domestication attempts have been rare. The species often grow together and are competitors. Which species dominate depends on soil conditions and is determined by small differences. The changing climate and various disturbances will also influence the distribution patterns of wild berries and competing plant species. Semi-cultivation in the natural habitat is probably the best solution for viable and sustainable commercial exploitation of these resources, at least if they are sold with the label “wild berries”. However, these species are easily propagated by fresh cuttings, and they can grow on arable land, adapting soil conditions to fit their growing preferences. Such cultivation, to our knowledge has not yet been performed on a large economic scale.
Sammendrag
BACKGROUND: There are increasing demands for wild berries not only for various food and beverage products, but also in cosmetics and for extraction of various biochemical compounds. The newly funded project “WILDBERRIES” (Norwegian Research Council) will focus on predictability of yield and quality of lingonberry (Vaccinium vitis - idaea). With characteristics like taste, secondary metabolites with health properties, versatility and preservative properties there is a great potential for value creation. It is estimated that the annual crop of lingonberries in Norway is 115,000 tones, most of it non-exploited. One of the key challenges for further commercialization is access to the raw material. The Norwegian topography are challenging for the logistic around harvesting. However, the same landscape can possibly give unique qualities. The availability and quality of wild berry yields vary from year to year and from locations to location. Yields are affected by climatic conditions years in advance, during the ripening and condition and management of the forest. OBJECTIVE: WILDBERRIES aim to increase the commercial utilization of wild berries from Norwegian forests. METHODS: WILDBERRIES seek to develop tools to map areas with high yields and/or high-quality berries. Experiments at controlled climatic conditions will give new knowledge on key factors affecting flower development, ripening, yield and quality. RESULTS: Plots for phenotyping and berry collection will be established at different sites summer 2019. The existing clone collection of lingonberries will be increased, and controlled experiments will be performed from the second project year. CONCLUSIONS: Wanted outcome of the project are models for prediction of yields and quality of the berries.
Forfattere
Eldrid Lein Molteberg Vinh Hong Le Mads Rødningsby Robert Nybråten Per Jarle MølllerhagenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag