Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2020
Authors
A Schmitt I Pertot V Verrastro Jakob Magid B Moeskops K Möller Spiridoula Athanasiadou C Experton Håvard Steinshamn F Leiber Veronika Maurer EK Bunemann J Herforth-Rahme Lucius TammAbstract
No abstract has been registered
Authors
Kerry O'Donnell Abdullah M. S. Al-Hatmi Takayuki Aoki Balázs Brankovics José F. Cano-Lira Jeffrey J. Coleman G. Sybren de Hoog Antonio Di Pietro Rasmus J. N. Frandsen David M. Geiser Connie F. C. Gibas Josep Guarro Hye-Seon Kim H. Corby Kistler Imane Laraba John F. Leslie Manuel S. López-Berges Erik Lysøe Jacques F. Meis Michel Monod Robert H. Proctor Martijn Rep Carmen Ruiz-Roldan Adnan Šišic Jason E. Stajich Emma T. Steenkamp Brett A. Summerell Theo A. J. van der Lee Anne D. van Diepeningen Paul E. Verweij Cees Waalwijk Todd J. Ward Brian L. Wickes Nathan P. Wiederhold Michael J. Wingfield Ning Zhang Sean X. ZhangAbstract
No abstract has been registered
Authors
Bertrand Guenet Benoit Gabrielle Claire Chenu Dominique Arrouays Jerome Balesdent Martial Bernoux Elisa Bruni Jean-Pierre Caliman Remi Cardinael Songchao Chen Philippe Ciais Dominique Desbois Julien Fouche Stefan Frank Cathrine Henault Emanuele Lugato Victoria Naipal Thomas Nesme Michael Obersteiner Sylvain Pellerin David S. Powlson Daniel Rasse Frédéric Rees Jean-Francois Soussana Yang Su Hanqin Tian Hugo Valin Feng ZhouAbstract
To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5 °C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large‐scale deployment of other climate mitigation strategies are also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2O), a powerful greenhouse gas, and increasing SOC may influence N2O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here, we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta‐analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g, biochar or non‐pyrogenic C amendment application) may even decrease N2O emissions.
Authors
Habtamu AlemAbstract
No abstract has been registered
Authors
Erik J. M. Koenen Dario Isidro Ojeda Alayon Royce Steeves Jérémy Migliore Freek T. Bakker Jan J. Wieringa Catherine Kidner Olivier J. Hardy R. Toby Pennington Anne Bruneau Colin E. HughesAbstract
No abstract has been registered
Authors
Sophia Etzold Marco Ferretti Gert Jan Reinds Svein Solberg Arthur Gessler Peter Waldner Marcus Schaub David Simpson Sue Benham Karin Hansen Morten Ingerslev Mathieu Jonard Per Erik Karlsson Antti-Jussi Lindroos Aldo Marchetto Miklos Manninger Henning Meesenburg Päivi Merilä Pekka Nöjd Pasi Rautio Tanja G.M. Sanders Walter Seidling Mitja Skudnik Anne Thimonier Arne Verstraeten Lars Vesterdal Monika Vejpustkova Wim de VriesAbstract
Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
Authors
Hanno Sandvik Olga Hilmo Snorre Henriksen Reidar Elven Per Arvid Åsen Hanne Hegre Oddvar Pedersen Per Anker Pedersen Heidi Solstad Vigdis Vandvik Kristine Bakke Westergaard Frode Ødegaard Sandra Charlotte Helene Åström Hallvard Elven Anders Endrestøl Øivind Gammelmo Bjørn Arild Hatteland Halvor Solheim Björn Nordén Leif Sundheim Venche Talgø Tone Falkenhaug Bjørn Gulliksen Anders Jelmert Eivind Oug Jan Henry Sundet Elisabet Forsgren Anders Gravbrøt Finstad Trygve H. Hesthagen Kjell Harald Nedreaas Rupert Wienerroither Vivian Husa Stein Fredriksen Kjersti Sjøtun Henning Steen Haakon Hansen Inger Sofie Hamnes Egil Karlsbakk Christer Magnusson Bjørnar Ytrehus Hans Christian Pedersen Jon Swenson Per Ole Syvertsen Bård Gunnar Stokke Jan Ove Gjershaug Dag Dolmen Gaute Kjærstad Stein Ivar Johnsen Thomas Correll Jensen Kristian Hassel Lisbeth GederaasAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Xiao Huang Shaoqiang Ni Chao Wu Conrad Zorn Wenyuan Zhang Chaoqing YuAbstract
No abstract has been registered
Abstract
There is an increasing interest in plastics, both as a resource and as a pollutant. In Europe, 25.8 million tons of plastic waste are generated each year, and their effects on climate, economy, human and environmental health are major challenges that society needs to address. Although a lot of emphasis is placed on recycling, the use of recycled plastics is still low in the EU. In this context, climate change and environmental concerns have boosted the development of various types of biodegradable plastics. The use of biodegradable plastics spans from disposable containers for food/drink, serviceware and wipes, via waste bags for organic waste collected for biogas production, to agricultural films used to cover soil during vegetable production. However, biodegradable plastics are rarely degraded so quickly and completely that the products disappear in nature, and the label may encourage people think otherwise, enhancing littering. The aim of our study was to describe the fate of biodegradable materials and products during waste treatment, and more specifically during composting. How long does it take these materials to degrade? What are the conditions for degradation, and ultimately, for obtaining plastic-free compost products? To answer these questions, we selected relevant materials, including compostable serviceware, biodegradable plastic bags used for organic waste collection, and biodegradable agricultural mulch films. Composting experiments were performed both at lab-scale (1.5 L containers with externally applied heating) and larger scale (in 140 L insulated compost tumblers, with natural heating from the composting processes, continuously monitored). The endpoints studied were recovery, mass loss, changes in morphology and composition, and microbial analysis of the various composts. In addition, we assessed the applicability of chemical digestion methods used for sample pretreatment of environmental samples containing conventional plastics to biodegradable plastics. Biodegradable plastics is an umbrella term covering materials with diverse polymeric compositions and thus material properties. This was well demonstrated by our selected materials, which displayed distinct degradation behaviors under similar controlled conditions. The time-course of degradation during composting will be presented for all selected materials, together with the main parameters influencing their degradation rates. In addition, some methodological challenges in this research field will be discussed. Finally, experience from a municipal composting facility receiving biodegradable plastic waste will also be presented to put our laboratory-based results into perspective.