Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Occasionally, high mycotoxin levels are observed in Norwegian oat grain lots. The development of oat varieties with improved resistance to Fusarium and mycotoxins is therefore highly valued in order to increase the share of high quality grain into the food and feed industry. The Norwegian project “SafeOats” (2016-2020) aimed to develop resistance-screening methods to facilitate the phase-out of Fusarium-susceptible oat germplasm, as well as to give new insight into the biology of Fusarium langsethiae and HT2+T2 accumulation in oats. In naturally infested as well as in inoculated field trials, the relative ranking of oat varieties according to Fusarium graminearum/DON content did not resemble the ranking according to F. langsethiae/HT2+T2 content. One variety regarded as moderate resistant to Fusarium according to studies of DON content, was susceptible to F. langsethiae and thus at high risk for HT2+T2 contamination. Screening of resistance to F. langsethiae/HT2-T2 should therefore be routinely applied in breeding programs in addition to the already established screening of resistance to F. graminearum/DON. The incidence of F. langsethiae in a selection of oat seed lots used for commercial sowing showed a similar ranking of varieties as in the field trials. On average, the fungus was observed on 5% of the kernels in 168 seed lots tested during 2016-2018. No indication of transmission of F. langsethiae from germinating seed to seedling was found in a study with germination of naturally infected seeds. We investigated whether removing of small kernels by size sorting could be a method to reduce the content of mycotoxins in oat grain. For several of the mycotoxins including HT2+T2, the concentrations were considerably higher in the small kernel fraction compared to unsorted grain. Our results demonstrate that the level of mycotoxins in unprocessed oat grain can be reduced by removing small kernels. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry. The project was financed by The Agriculture and Food Industry Research Funds /Research Council of Norway with support from the industry partners Graminor, Lantmännen, Felleskjøpet Agri, Felleskjøpet Rogaland & Agder, Fiskå Mølle Moss, Norgesmøllene, Strand Unikorn/Norgesfôr and Kimen Seed Laboratory.

Abstract

The scope of this study was to provide an update on fluoride (F) emission effects on vegetation around three aluminium smelters. We visited Årdal and Sunndal smelters in 2019-2020 and Mosjøen in 2020, assessed and documented the visual symptoms of F-damage on vegetation and related these to detected values of F in plant tissue. Three plant species showed qualities as useful indicators: Rowan, pine and St. John’s wort. Because male-fern accumulated extreme F-values and showed clear grazing damage, the monitoring of this species may be warranted because of the potential health hazard for the grazing animals. In Årdal and Sunndal, during 2019 and 2020, we detected the highest F-values in male-fern, ranging from 94 to 925 mg F/kg. In rowan, the highest F-concentration was detected in trees growing within the Årdal smelter (1161 mg F/kg) but on all other locations the F-concentrations in rowan ranged from 4 to 327 mg F/kg. In pine, the F-concentrations ranged from 6-351 mg F/kg for all needle ages, but older needles always accumulated more F than younger ones. In St. John’s wort the accumulated F-values ranged from 10-84 mg F/kg. At all smelters there was a gradient of decreasing F-concentration in vegetation with increasing distance from the smelter. F-emissions in Årdal (12 and 11 kg F/hour in 2019 and 2020, respectively) and in Sunndal during 2019 (12 kg F/hour) were only slightly higher than the recommended limits (10 kg F/hour) for damage on vegetation, while in Mosjøen the F-emissions were 7 kg F/hour in 2020. The presence of F-damage on vegetation was consistent with the reported emission-levels. On basis of this evaluation, reductions in emissions are still advisable in Årdal and Sunndal, while the situation is acceptable in Mosjøen.

Abstract

Eradication of alien invasive species in the soil with steam as an alternative to chemical fumigation may allow contaminated soil to be reused. We have investigated steam disinfestation of soil to combat invasive plant species in three experiments including different temperatures and exposure durations using a prototype stationary soil-steaming device. The experiments included effects on seed germination of bigleaf lupine (Lupinus polyphyllus Lindl.), ornamental jewelweed (Impatiens glandulifera Royle), and wild oat (Avena fatua L.; one population from Poland and one from Norway), as well as effects on sprouting rhizome fragments of Canada goldenrod (Solidago canadensis L.) and Bohemian knotweed (Reynoutria x bohemica Chrtek & Chrtková). In Experiment 1, we tested four different soil temperatures of 64, 75, 79, and 98 C with an exposure duration of 90 s. In Experiments 2 and 3, we tested exposure durations of 30, 90, and 180 s and 90, 180, and 540 s, respectively, at 98 C. Seed pretreatment of 14 d cooling for L. polyphyllus and I. glandulifera, no seed pretreatment and 12-h moistening for A. fatua populations, and 5- and 10-cm cutting size for R. x bohemica were applied. Our results showed germination/sprouting was inhibited at 75 C for I. glandulifera (for 90 s) and 98 C for the other species; however, longer exposure duration was needed for L. polyphyllus. While 30 s at 98 C was enough to kill A. fatua seeds and S. canadensis and R. x bohemica rhizome fragments, 180-s exposure duration was needed to kill L. polyphyllus seeds. The results showed promising control levels of invasive plant propagules in contaminated soil by steaming, supporting the steam treatment method as a potential way of disinfecting soil to prevent dispersal of invasive species.