Biography

  • Education in clinical medicin (MD), medical microbiology and immunology (MSc) and microbial genetics (PhD)
  • Molecular biology and biotechnology
  • Microbial source tracking (MST) of water fecal contamination
  • Host-specific genetic markers
  • Clinical relevant pathogens present in water, soil and biogas digestate materials
  • Analyses of antibiotic resistance genes (ARGs) in environmental samples
  • Microbial pollution and water quality measures
  • Microbial diversity of water and biogas digestates with special focus on bacteria and archaea
  • High-throughput Next Generation DNA Sequencing (NGS) technology, e.g Illumnia MiSeq platform
  • Bioinformatics analyses on DNA/RNA molecules, quantitative real-time PCR (qPCR) and Illumina sequencing data analysis
  • Functional genetic markers of carbon and nitrogen cycles

 

Read more

Abstract

During June 2019, an outbreak of campylobacteriosis occurred in Askøy, an island northwest of Bergen, Norway. According to the publicly available records, over 2000 residents fell ill and 76 were hospitalised, and two deaths were suspected to be associated with Campylobacter infection. By investigating the epidemic pattern and scope, an old caved drinking water holding pool was identified that had been faecally contaminated as indicated by the presence of Escherichia coli (E. coli). Furthermore, Campylobacter bacteria were found at several points in the water distribution system. In the escalated water health crisis, tracking down the infectious source became pivotal for the local municipality in order to take prompt and appropriate action to control the epidemic. A major task was to identify the primary faecal pollution source, which could further assist in tracking down the epidemic origin. Water from the affected pool was analysed using quantitative microbial source tracking (QMST) applying host-specific Bacteroidales 16S rRNA genetic markers. In addition, Campylobacter jejuni, Enterococcus faecalis, Clostridium perfringens and Shiga toxin-producing E. coli were detected. The QMST outcomes revealed that non-human (zoogenic) sources accounted predominantly for faecal pollution. More precisely, 69% of the faecal water contamination originated from horses.

Abstract

Aquatic microbial diversity, composition, and dynamics play vital roles in sustaining water ecosystem functionality. Yet, there is still limited knowledge on bacterial seasonal dynamics in lotic environments. This study explores a temporal pattern of bacterial community structures in lotic freshwater over a 2-year period. The aquatic bacterial communities were assessed using Illumina MiSeq sequencing of 16S rRNA genes. Overall, the communities were dominated by α-, β-, and γ-Proteobacteria, Bacteroidetes, Flavobacteriia, and Sphingobacteriia. The bacterial compositions varied substantially in response to seasonal changes (cold vs. warm), but they were rather stable within the same season. Furthermore, higher diversity was observed in cold seasons compared to warm periods. The combined seasonal-environmental impact of different physico-chemical parameters was assessed statistically, and temperature, suspended solids, and nitrogen were determined to be the primary abiotic factors shaping the temporal bacterial assemblages. This study enriches particular knowledge on the seasonal succession of the lotic freshwater bacteria.

Abstract

Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host‐specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo‐zoogenic faecal water contamination on microbial diversity in lotic ecosystems.

Abstract

The aquatic microbiota is known to be an important factor in the sustainability of the natural water ecosystems. However, the microbial community also might include pathogens, which result in very serious waterborne diseases in humans and animals. Faecal pollution is the major cause of these diseases. Therefore, it is of immense importance to assess the potential impact of faecal pollution, originating from both anthropogenic and zoogenic sources, on the profile of microbial communities in natural water environments. To this end, the microbial taxonomic diversity of lotic ecosystems in different regions of Norway, representing urban and rural areas, exposed to various levels of faecal pollution, was investigated over the course of a 1-year period. The highest microbial diversity was found in rural water that was the least faecally polluted, while the lowest was found in urban water with the highest faecal contamination. The overall diversity of the aquatic microbial community was significantly reduced in severely polluted water. In addition, the community compositions diverged between waters where the dominant pollution sources were of anthropogenic or zoogenic origin. The results provide new insight into the understanding of how faecal water contamination, specifically that of different origins, influences the microbial diversity of natural waters.

Abstract

Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.