Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Sustainable nature management and ecosystem conservation depends critically on scientifically sound and stakeholder-relevant analytical frameworks for monitoring and assessing ecological condition. Several general frameworks are currently being developed internationally, including the Essential Biodiversity Variables (EBV), and the UN’s SEEA EEA Ecosystem Condition Typology (ECT). However, there has so far been few attempts to develop empirical implementations of these general frameworks, or to assess their applicability for environmental decision-making at national or regional scales. In this paper, we aim to fill this implementation gap by demonstrating a practical application of an empirically-based ecological condition assessment framework, the Index-Based Ecological Condition Assessment (IBECA). IBECA defines seven major classes of indicators of ecological condition, representing distinct ecosystem characteristics, and empirically synthesizes indicators for each of these characteristics from various monitoring data. We exemplify and explore the utility and robustness of IBECA using a case study from forest and alpine ecosystems in central Norway, and we investigate how IBECA aligns with the two international frameworks EBV and ECT. In particular, we analyze how the different approaches to categorize indicators into classes affect the assessment of ecological condition, both conceptually and using the case study indicators. We used eleven indicators for each of the two ecosystems and assessed the ecological condition according to IBECA for i) each individual indicator, ii) the seven ecosystem characteristics (indicator classes), and iii) a synthetic ecological condition value for the whole ecosystem. IBECA challenges key concepts of the international frameworks and illustrates practical challenges for national or regional level implementation. We identify three main strengths with the IBECA approach: i) it provides a transparent and management-relevant quantitative approach allowing assessment of spatio-temporal variation in ecological condition across indicators, characteristics and ecosystems, ii) the high degree of flexibility and transparency facilitates updating the ecological condition assessments, also back in time, as improved data and knowledge of indicators emerge, and iii) the quantitative and flexible procedure makes it a cost-effective approach suitable for fast management implementations. More generally, we stress the need for carefully choosing appropriate classification and aggregation approaches in ecological condition assessments, and for transparent and data-driven analytical approaches that can be adjusted as knowledge improves.

Abstract

Background Bioenergy plays a key role in the transition to a sustainable economy in Europe, but its own sustainability is being questioned. We study the experiences of Sweden, Finland, Denmark and Norway, to find out whether the forest-based bioenergy chains developed in the four countries have led to unsustainable outcomes and how the countries manage the sustainability risks. Data were collected from a diversity of sources including interviews, statistical databases, the scientific literature, government planning documents and legislation. Results Sustainability risks of deforestation, degradation of forests, reduced carbon pools in forests, expensive biopower and heat, resource competition, and lack of acceptance at the local level are considered. The experience of the four countries shows that the sustainability risks can to a high degree be managed with voluntary measures without resorting to prescriptive measures. It is possible to add to the carbon pools of forests along with higher harvest volumes if the risks are well managed. There is, however, a marginal trade-off between harvest volume and carbon pools. Economic sustainability risks may be more challenging than ecological risks because the competitiveness order of renewable energy technologies has been reversed in the last decade. The risk of resource competition harming other sectors in the economy was found to be small and manageable but requires continuous monitoring. Local communities acting as bioenergy communities have been agents of change behind the most expansive bioenergy chains. A fear of non-local actors reaping the economic gains involved in bioenergy chains was found to be one of the risks to the trust and acceptance necessary for local communities to act as bioenergy communities. Conclusions The Nordic experience shows that it has been possible to manage the sustainability risks examined in this paper to an extent avoiding unsustainable outcomes. Sustainability risks have been managed by developing an institutional framework involving laws, regulations, standards and community commitments. Particularly on the local level, bioenergy chains should be developed with stakeholder involvement in development and use, in order to safeguard the legitimacy of bioenergy development and reconcile tensions between the global quest for a climate neutral economy and the local quest for an economically viable community. Keywords: Bioenergy, Sustainability, Risk assessment, Risk management, Nordic countries

To document

Abstract

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, Nematodes, Phasmarhabditis californica, Moraxella osloensis. Parasitic nematodes and associated bacteria are increasingly being used for biocontrol of molluscs. Functionally, it is the bacteria that kill and thus control the targeted pests, but the function of the bacteria is dependent on the nematodes, which should be regarded as vectors of biocontrol. Although the nematodes and the bacteria have a symbiotic relationship within such biocontrol formulations, it should be noted that they are not dependent on each other in the wild, but can establish separate populations which can be free-living or hosted by other organisms. The biocontrol product Nemaslug 2.0 contains the nematode Phasmarhabditis californica (strain P19D) and the bacterial symbiont Moraxella osloensis (unknown strain). The nematode was first described in 2016 and has never been reported in Norway. The lack of reports suggests that it is absent from Norway, but this conclusion comes with a high degree of uncertainty since there have been limited search efforts. The climatic thresholds of the nematode are not known, but its current distribution, spanning widely varying climates, suggests that it could survive and establish in Norway. Natural spread from currently known areas of establishment to natural habitats in Norway is ruled out due to the nematode’s limited dispersal capacity. However, human-assisted spread (e.g. via the use of biocontrol products) and establishment would be likely if Nemaslug 2.0 is allowed for use in open fields in Norway. Use of Nemaslug 2.0 in greenhouses and other enclosed areas is not likely to facilitate spread to natural habitats in Norway provided that residues are properly handled. However, deposition of product residues from greenhouses to outdoor areas may result in local establishment of the nematode in the vicinity of the deposition. Phasmarhabditis californica has a broad host range and may parasitize both rare/endangered and common mollusc species. However, there is no scientific evidence suggesting that the nematode can affect natural populations of molluscs in wild habitats, or otherwise have negative effects on biodiversity. The nematodes’ association with the bacteria Moraxella osloensis is most likely lost, or at least weakened, in natural habitats, suggesting that the nematode becomes less capable of killing its hosts in the wild. Phasmarhabditis californica is not capable of harming or infecting humans. The bacterial species Moraxella osloensis is already present in Norway in a few locations and at a low abundance, and it may be native to Norway. Little is known regarding its distribution in natural environments, but the literature shows that it can infect humans and other mammals. In humans with immunodeficiency or other comorbidities, M. osloensis can cause meningitis, vaginitis, sinusitis, bacteremia, endocarditis, and septic arthritis. The risk of infection in people handling Nemaslug 2.0 can probably be substantially reduced by protective clothing and appropriate handling. We are not aware of any reported health issues arising from use of the previous version of Nemaslug, which also contains M. osloensis. Different strains of M. osloensis are known to vary in their sensitivity to antibiotics, and likely in other traits too. Thus, the lack of information provided about the strain identity and specific characteristics of the strain used in Nemaslug 2.0 generates a high degree of uncertainty regarding its pathogenicity, climate tolerance, sensitivity to antibiotics etc.