Grete H. M. Jørgensen

Research Scientist

(+47) 407 66 769
grete.jorgensen@nibio.no

Place
Tjøtta

Visiting address
Parkveien, 8861 Tjøtta

Biography

Education and areas of interest:

PhD within ethology with emphasis on animal environment and animal welfare. Have been working with thermoregualtion, climate, sensortechnology and animal preferences. My PhD project dealt with physical and social environment for sheep during the long indoor feeding period. 

Professional qualifications:

  • Experienced project leader within the NIBIO system. I have also worked for the Forskerforbundet organisation.
  • Competence within data processing and statistical analysis. 
  • Scientific co-supervisor for several bachelor and masters students. Experience as teacher, lecturer and cesor.
  • Have been publishing international papers on many different animal species. 
  • Themoregulation and social behaviour in horses.
  • Experience with measurement of methane from ruminants (respiration chambers and the SF6 method)
  • Development and testing of sensor technology for surveillance of animals both in barns and on rangeland pastures. 
  • Experience as project leader for several reindeer projects. For example: Stress and welfare for reindeer during handling, Health risks and hazards for reindeer herders, welfare indicators for reindeer and virtual fencing. 
  • Participated in several INTERREG projects. For example Animal Sense (Interreg Botnia Atlantica 2012-2019)
  • Is appointed Person with special control responsibility for the animal welfare unit in NIBIO, and at the endorsed research animal facility at Tjøtta.

Read more
To document

Abstract

Bakgrunn: Millioner av fisk bedøves og avlives i norsk akvakultur hvert år. Fiskens velferd er beskyttet gjennom lovverket, og det er krav om at alle individer skal være bevisstløse før avlivning og holdes bevisstløse til de er bekreftet døde etter avblødning. Det er mangelfull kunnskap om i hvilken grad de forskjellige bedøving og avlivningsmetodene som brukes i Norge oppfyller regelverket for alle aktuelle fiskearter. Oppdrettsfisk har forskjellig anatomi, fysiologi og adferd, og det er individuelle forskjeller i størrelse og helsestatus som det må tas hensyn til ved slakting. På grunn av dette ba Mattilsynet Vitenskapskomiteen for mat og miljø (VKM) gjøre en vurdering av hvilke kriterier for dokumentasjon av metoder som vil sikre fiskevelferden under slakting, samt hvordan forskjeller mellom fiskeartene kan påvirke fiskevelferden og krav til dokumentasjonen. VKM ble også bedt om å oppsummere kunnskapen og risikofaktorer for fiskevelferden ved metoder for bedøving og avliving for oppdrettsfisk i Norge. Metoder: VKM opprettet en arbeidsgruppe med ekspertise innen fiskevelferd, slaktemetoder og risikovurdering. Litteratursøk ble utført av Folkehelseinstituttet. Det ble også utført ytterligere manuelle søk, inkludert gjennomgang av artikler sitert i den nyeste litteraturen, søk i prosjektdatabasen til Fiskeri- og havbruksnæringens forskningsfinansiering og nettsteder til offentlige organisasjoner. Artene som ble inkludert i søket var fisk som oppdrettes i Norge til konsum: laks, regnbueørret, røye, ørret, kveite, piggvar, torsk, flekksteinbit og yellowtail kingfish. I tillegg ble enkelte fiskearter inkludert som ikke går til konsum, men som fortsatt kan komme til slakteriene: fisk brukt til lakselusbekjempelse (rognkjeks, berggylt, bergnebb, grønngylt, grasgylt) og villfisk (sei, hyse) som kan ha kommet inn i merdene under produksjonsfasen. Effektene av bedøvelse og avliving på fiskens velferd ble vurdert ved å følge en modifisert versjon av EFSAs veiledning om vurderingskriterier for søknader om nye eller endrede bedøvningsmetoder. Vurderinger: Velferden hos fisk er essensiell under bedøving og avlivning, og det er viktig å etablere kunnskap om metoder som sikrer at alle individer holdes bevisstløse til de er bekreftet døde. Elektroencefalogram (EEG) er den beste metoden til å bekrefte bevisstløshet og død. Måling av EEG på enkelt fisk er derimot ikke praktisk gjennomførbart på slakteriet i dag, og derfor må forskjellige fysikkrelaterte parametere sammen med atferds- og fysiologiske indikatorer brukes. Elektrisk bedøvelse er en metode som forårsaker midlertidig bevisstløshet. Den største risikofaktoren for redusert fiskevelferd med denne metoden er derfor at fisken gjenvinner bevisstheten før avblødning. Effekten av elektrisk bedøvelse varierer mellom artene, og det er nødvendig med dokumentasjon av effekten hos hver enkelt art. Antall fisk som kommer til tørr elektrisk bedøvelse er en viktig faktor for fiskevelferden, siden for mange fisk på en gang øker risikoen for utilstrekkelig bedøvelse og dermed unødvendig smerte og lidelse for fisken. Slagbedøvelse forårsaker umiddelbart og irreversibelt tap av bevissthet når slagene påføres korrekt og med tilstrekkelig kraft. Utføres slaget feil, for eksempel ved å treffe fisken på feil sted eller med for lite kinetisk energi, kan fisken forbli bevisst mens den blir avlivet. Dette vil forårsake lidelse for fisken. Automatiske slagbedøvere må tilpasses til fiskens størrelse og art, sistnevnte fordi hjernens plassering varierer mellom arter. Den største velferdsrisikoen ved avlivingsmetoden gjellekutting er utilstrekkelig kutting med langsom avblødning, noe som resulterer i at fisken kan gjenvinne bevisstheten før den er død. (...)

To document

Abstract

VKM has assessed the risk of introduction and spread of bovine tuberculosis in Norway and cannot rule out that the disease still exists in Norway. There is a low risk of the disease being reintroduced with imported cattle, but the import of llamas and alpacas poses a greater risk. If the disease were to establish in Norway, there is a high risk of spread both among domestic animals and to wildlife. These are the main conclusions The Norwegian Scientific Committee for Food and Environment (VKM) has made in a risk assessment commissioned by the Norwegian Food Safety Authority. Background Following the outbreak of bovine tuberculosis in 2022, VKM was asked to investigate the risk of introduction as well as the risk of spread and establishment of the disease in Norway. The disease primarily affects cattle, but other animals and humans can also be affected. Bovine tuberculosis is a chronic disease that is difficult to diagnose. Therefore, it may take months or years before infected animals are detected. This makes it challenging to eradicate the disease. Conclusions With today's very limited import, VKM concludes it is unlikely that bovine tuberculosis will be introduced to Norway with cattle. Since neighboring countries Sweden and Finland are free from the disease, migration of wildlife will not pose a risk of introduction. However, as the source of the 2022 outbreak has not been identified, it cannot be determined if the disease is still present in Norway. “Alpacas and llamas pose a greater risk. These species are particularly susceptible to the disease, and animals have been imported to Norway, also from countries where the bacterium is common in the cattle population. It is therefore likely that the bacterium could be introduced to Norway with these species if imports continue”, says Eystein Skjerve, Scientific leader of the project team. There is significant trade and transportation of live animals (cattle, alpacas, and llamas) within Norway. If bovine tuberculosis were to establish here, such movements would pose a significant risk of spreading the bacterium. Furthermore, manure from infected herds could pose a risk of spreading to livestock and wild animals. Additionally, contact between livestock and wild animals, such as badgers, wild boars, and various deer species, could lead to the spread of the disease to the wild population. If bovine tuberculosis is established in Norway, a control and eradication strategy would require considerable time and resources. If the disease is introduced to-, and established in wild animal populations, experience from other countries indicates that it will be very challenging to eradicate the disease. “The risk of transmission of bovine tuberculosis to humans is generally low. Veterinarians, farmers, and slaughterhouse workers have an increased risk of infection. If the disease is established in Norway, the greatest risk of transmission to humans is through the consumption of both unpasteurised milk and dairy products”, Skjerve says. Risk-Reducing Measures VKM was also asked to identify several measures that could reduce the risk of introduction and establishment of bovine tuberculosis in Norway: Avoid importing animals from countries and regions where bovine tuberculosis is present in livestock. Avoid importing roughage to Norway from countries and regions with bovine tuberculosis. Increase testing requirements for the trade and movement of alpacas and llamas inside Norway. In the event of an outbreak of bovine tuberculosis, reduce contact between livestock and wild animals and routinely test wild animals (badgers, wild boars, and deer species). (...)

To document

Abstract

Biochar, which is the product of biomass pyrolysis, has been suggested as a feed supplement to improve performance in livestock systems and reduce greenhouse gas emissions. The aim of the current study was to investigate in vitro and in vivo potential of biochar to favourably modify rumen fermentation (e.g., an increase in total Short Chained Fatty Acid (SCFA) concentration and a change in SCFA profile), reduce methane emission and increase sheep growth performance. Four concentrates were produced with biochar inclusion of 0, 10, 23 and 46 g/kg DM. The experimental diets for the in vitro experiments consisted of straw and concentrate in a 60:40 ratio and included measurements of total gas and methane (CH4) production, pH, ammonia nitrogen, SCFA, and microbial assays (total bacteria and methanogenic archaea). Two in vivo experiments were performed where the animals received ad libitum forage with 0.4 kg concentrate daily. Experiment 1 investigated the daily DM intake of sheep while experiment 2 investigated daily growth rate and CH4 emission of lambs. The inclusion of biochar had no impact on in vitro total gas production (ml/200 mg DM substrate) (P = 0.81) and CH4 production (ml/200 mg DM substrate) (P = 0.93). In vitro total SCFA concentration increased (P < 0.05) while acetate to propionate ratio (A:P) tended to decrease (P = 0.05) with both doses of biochar. Total bacteria decreased with the highest biochar inclusion in vitro (P < 0.05). Sheep’s DM intake (kg/d) increased when low and medium levels but not when a higher level of biochar was added to the diet (P < 0.001). The inclusion of biochar did not significantly impact the lamb’s daily growth rate (g/d) (P = 0.61) or enteric CH4 emissions (g/kg DM) (P = 0.43). We conclude that biochar supplementation had no favourable impacts on in vitro and in vivo CH4 production or on lamb’s growth rate. Further research with well-characterised biochar is needed to gain a better understanding of the potential of biochar as a feed additive for ruminant livestock.