Wendy Marie Waalen
Head of Department/Head of Research
Abstract
No abstract has been registered
Authors
Shirin Mohammadi Morten Lillemo Åshild Gunilla Ergon Sahameh Shafiee Stefano Zanotto Jon Arne Dieseth Wendy Marie Waalen Chloé Grieu Anne Kjersti UhlenAbstract
This study evaluated 22 spring-type faba bean cultivars in the main areas for cultivation of faba bean in Norway to assess the variation of 14 faba bean traits due to cultivar (G), environment (E), and their interaction (G × E), and to assess their stability across environments by using the additive main effects and multiplicative interaction (AMMI) analysis and coefficient of variation (CV). Significant G, E, and G × E effects were found for most traits, with environment accounting for much of the variance in yield and the growing degree days (GDD) to different developmental stages. Yield was highly correlated with thousand kernel weight (TKW) and GDD to BBCH 89 (maturation). The stability of the cultivars was studied for yield, TKW, and GDD to BBCH 89. Stability analysis using the AMMI stability value, yield stability index, CV, and the average sum of ranks identified Birgit, Stella, Bobas, and Macho as the most stable high-yielding cultivars across environments, achieving a mean yield of 6–6.4 tons ha−1. Bobas, Macho, Stella, and Yukon had the most stable TKW (612–699 g) and Bobas, Capri, Trumpet, and Vertigo were the most stable regarding GDD to BBCH 89 (1257°C days, with a base temperature of 5°C). These stable cultivars can be utilized in breeding programs to achieve high and stable faba bean yield in the main growing areas of Norway and other Nordic-Baltic countries.
Abstract
No abstract has been registered
Division of Food Production and Society
Climate resilient and market adapted Norwegian winter wheat production
Interest in winter wheat is growing in Norway. Climate change is expected to expand the wheat producing regions, yet warmer, wetter conditions in autumn and winter will increase soil erosion and nutrient loss risks.
Division of Biotechnology and Plant Health
Green crop protection: Cruciferous plants as a green alternative to chemical pesticides in cereals
Cereal plants infested with plant pathogenic fungi or nematodes may have reduced grain quality and yield. These diseases can partly be controlled by using chemical pesticides. The purpose of this project is to identify "green" methods to mitigate plant pathogenic fungi and nematodes in cereals, as an alternative to chemical pesticides.