Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2015

Abstract

Ten exotic Abies species were tested in two field trials, where the aim was to find suitable species and provenances for Christmas tree production in coastal and fjord areas in Norway. The material included 14 provenances of Abies nordmanniana, 3 provenances of Abies bornmuelleriana, 3 provenances of Abies koreana, 2 provenances of Abies amabilis, and 1 provenance each of Abies equi-trojani, Abies alba, Abies procera, Abies homolepis, Abies nephrolepis, and Abies forrestii. Field trials were established at Gulen in Sogn og Fjordane County and at Verdal in Nord-Trøndelag County. Christmas tree classification was done seven and eight growing seasons after establishment. The Christmas tree yield was higher in Gulen (64%) than in Verdal (45%), which is situated further north. Also, the survival and the height growth were higher in Gulen than in Verdal. A more humid climate and a longer growth season in Gulen may explain some of the differences. Of the 10 species, A. nordmanniana, A. homolepis, and A. bornmuelleriana produced the highest Christmas tree yield at Gulen, while A. homolepis and A. koreana had the highest yield at Verdal. Due to early bud burst, A. equi-trojani and A. bornmuelleriana are only suited for Christmas tree growing in the best climatic areas.

To document

Abstract

Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly inv asive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestr ial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distr i- bution modelling to test for a region effect on each species’ climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with str ictly disjunct populations and 58 species (16%) of the 358 species with distant popula- tions showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic–alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000–15,000 years. Therefore, the basic assumption of species distribution models that a species’ climatic niche is constant in space and time – at least on time scales 10 4 years or less – seems to be largely valid for arctic–alpine plants.