Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Karin Juul Hesselsøe Anne Friederike Borchert Trond Olav Pettersen Atle Beisland Kristine Sundsdal Victoria Stornes Moen Erik Lysøe Monica Skogen Carl Frisk Tatsiana Espevig Christian Spring Mark Ferguson Matthew Clark Liam Hargreaves Martin Nilsson Wolfgang Prämaßing Lukas Borrink Daniel R. Hunt Julian Siebert Axel Städler Yuri Lebedin Valentina Maygurova Anna Antropova Tatiana Gagkaeva Marina Usoltseva Kate Entwistle Sabine Braitmaier Carlos Guerrero Ingeborg M. Hokkanen Heikki HokkanenAbstract
Integrated Pest Management (IPM) refers to the integration of all available techniques for control of diseases, harmful insects and weeds and keep the use of pesticides to levels that are economically justified and environmentally sustainable (FAO, 2016). In compliance with regulations 2009/128/EU and 2009/1107/EU, the five Nordic countries, UK, the Netherlands, Germany, Portugal and Italy have all imposed strict regulations on pesticide use (STERF, 2016). In this context, a main challenge for golf courses is to secure high-quality playing conditions for current and future generations while at the same time reducing the dependency on chemical plant protection products. IPM has for many years been one of STERF’s highest research priorities with a focus on: Evaluation and management of turfgrass species, varieties and mixtures to create more disease resistant, stress tolerant and weed-competitive turf (i); Identification and understanding the biology and proliferation of harmful organisms in turf (ii) Safer and more efficient use of pesticides (including reduced risk for surface runoff and leaching to the environment (http://www.sterf.org/sv/projects/project-list?pid=12) (iii). Due to common EU directives, global warming and other reasons, golf courses in other parts of Northern Europe mostly experience the same IPM challenges as in the Nordic countries. This project addresses UN’s Sustainable Development Goals 12, 13 and 15 as described by R&A and STERF in ‘Golf Course Scandinavia 2030’. It is also a direct follow-up of R&A’s GC2030 ‘Action Plans for ‘Golf Course Condition and Playability’ (1) and ‘Resources’ which request projects that identify alternative approaches to pesticide use and discuss their efficacy (2). The overall goal of this project was to investigate cultural practices and new technologies for prevention and control of the two most important and destructive turfgrass diseases on golf course putting greens - microdochium patch and dollar spot, and to get insight on situation and methods for prevention and control of insect pests on golf courses with a minimum use of pesticides in the Nordic countries.
Authors
Attila Nemes Trond Haraldsen Lorna Dawson Monica Jayesingha Johanna Skrutvold Maria Dietrich Sigrid Esmeralda ArnestadAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
This report describes the development of models to calculate losses of soil particles, phosphorus, nitrogen and organic carbon from agricultural land to first order streams. The results from the models serve as input data to the TEOTIL model which estimates the net losses from agriculture and all other sources. The agricultural models (AGRITIL) were calibrated for catchments in the Agricultural Environmental monitoring programme and are limited by the availability of data for different regions in Norway.
Abstract
Rapporten gir en oversikt over NIBIO sine aktiviteter i AdaptaN II prosjektet gjennomført i samarbeid med tsjekkiske partnere. NIBIO har bidratt med vurdering av erosjonsrisiko og modellering av erosjonstiltak for klimatilpasning på jordbruksarealer for et nedbørfelt i Větřkovice i Moravian – Silesian Region i Tsjekkia. Delrapport 1 gir en oversikt over aktuelle erosjonstiltak i bruk i Norge samt regelverk, støtteordninger og subsidier for miljøtiltak. Delrapport 2 gir en oversikt over viktige faktorer ved vurdering av erosjonsrisiko og resultat fra modellering av utvalgte erosjonstiltak, spesielt vegetasjonssoner og grasdekte vannveier for studieområdet i Tsjekkia.
Abstract
Denne rapporten gir en oversikt over NIBIO sine aktiviteter i AdaptaN II prosjektet gjennomført i samarbeid med tsjekkiske partnere. NIBIO har bidratt med vurdering av erosjonsrisiko og modellering av erosjonstiltak for klimatilpasning på jordbruksarealer for et nedbørfelt i Větřkovice i Moravian – Silesian Region i Tsjekkia. Delrapport 1 gir en oversikt over aktuelle erosjonstiltak i bruk i Norge samt regelverk, støtteordninger og subsidier for miljøtiltak. Delrapport 2 gir en oversikt over faktorer ved vurdering av erosjonsrisiko og resultat fra modellering av utvalgte erosjonstiltak, spesielt vegetasjonssoner og grasdekte vannveier for studieområdet i Tsjekkia.
Abstract
No abstract has been registered
Authors
Alice Budai Daniel Rasse Thomas Cottis Erik J. Joner Vegard Martinsen Adam O'Toole Hugh Riley Synnøve Rivedal Ievina Sturite Gunnhild Søgaard Simon Weldon Samson ØpstadAbstract
Carbon content is a key property of soils with importance for all ecosystem functions. Measures to increase soil carbon storage are suggested with the aim to compensate for agricultural emissions. In Norway, where soils have relatively high carbon content because of the cold climate, adapting management practices that prevent the loss of carbon to the atmosphere in response to climate change is also important. This work presents an overview of the potential for carbon sequestration in Norway from a wide range of agricultural management practices and provides recommendations based on certainty in the reported potential, availability of the technology, and likelihood for implementation by farmers. In light of the high priority assigned to increased food production and degree of self-sufficiency in Norway, the following measures were considered: (1) utilization of organic resources, (2) use of biochar, (3) crop diversification and the use of cover crops, (4) use of plants with larger and deeper root systems, (5) improved management of meadows, (6) adaptive grazing of productive grasslands (7) managing grazing in extensive grasslands, (8) altered tillage practices, and (9) inversion of cultivated peat with mineral soil. From the options assessed, the use of cover crops scored well on all criteria evaluated, with a higher sequestration potential than previously estimated (0.2 Mt CO2-equivalents annually). Biochar has the largest potential in Norway (0.9 Mt CO2-equivalents annually, corresponding to 20% of Norwegian agricultural emissions and 2% of total national emissions), but its readiness level is not yet achieved despite interest from industry to apply this technology at large scale. Extensive grazing and the use of deep-rooted plants also have the potential for increasing carbon storage, but there is uncertainty regarding their implementation and the quantification of effects from adapting these measures. Based on the complexities of implementation and the expected impacts within a Norwegian context, promising options with substantial payoff are few. This work sheds light on the knowledge gaps remaining before the presented measures can be implemented.
Abstract
No abstract has been registered