Carl Frisk

Research Scientist

(+47) 413 82 953
carl.frisk@nibio.no

Place
Særheim

Visiting address
Postvegen 213, NO-4353 Klepp stasjon

Biography

Carl Frisk is a research scientist at NIBIO. His research interests are centered around plant ecology, biodiversity and botany with special interests including grass phenology, pollen and urban ecology. He has broad experiences and skills in quantitative ecology, statistical modelling and remote sensing. He is fond of spicy food and would like to visit a redwood forest in the future. 

Read more
To document

Abstract

To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.

To document

Abstract

Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.

To document

Abstract

Alternaria is a plant pathogen and human allergen. Alternaria alternata is one of the most abundant fungal spores in the air. The purpose of this study was to examine whether Alternaria spp. spore concentrations can be used to predict the abundance and spatio-temporal pattern of A. alternata spores in the air. This was investigated by testing the hypothesis that A. alternata dominates airborne Alternaria spp. spores and varies spatio-temporally. Secondarily, we aimed at investigating the relationship between airborne Alternaria spp. spores and the DNA profile of A. alternata spores between two proximate (~ 7 km apart) sites. These were examined by sampling Alternaria spp. spores using Burkard 7-day and cyclone samplers for the period 2016–2018 at Worcester and Lakeside campuses of the University of Worcester, UK. Daily Alternaria spp. spores from the Burkard traps were identified using optical microscopy whilst A. alternata from the cyclone samples was detected and quantified using quantitative polymerase chain reaction (qPCR). The results showed that either A. alternata or other Alternaria species spores dominate the airborne Alternaria spore concentrations, generally depending on weather conditions. Furthermore, although Alternaria spp. spore concentrations were similar for the two proximate sites, A. alternata spore concentrations significantly varied for those sites and it is highly likely that the airborne samples contained large amounts of small fragments of A. alternata. Overall, the study shows that there is a higher abundance of airborne Alternaria allergen than reported by aerobiological networks and the majority is likely to be from spore and hyphal fragments.