Carl Frisk

Research Scientist

(+47) 413 82 953
carl.frisk@nibio.no

Place
Særheim

Visiting address
Postvegen 213, NO-4353 Klepp stasjon

Biography

Carl Frisk is a research scientist at NIBIO. His research interests are centered around plant ecology, biodiversity and botany with special interests including grass phenology, pollen and urban ecology. He has broad experiences and skills in quantitative ecology, statistical modelling and remote sensing. He is fond of spicy food and would like to visit a redwood forest in the future. 

Read more
To document

Abstract

Seasonal pollen allergy is a major public health concern, with many different pollen aeroallergens being present in the atmosphere at varying levels during the season. In Norway, information about spatiotemporal variation of pollen aeroallergens is currently lacking, leading to reduced ability to manage and treat seasonal allergies. Seven pollen aeroallergens (alder, hazel, willow, birch, pine, grass and mugwort) were monitored daily for 16 years from 12 regions and coalesced to create regional pollen calendars. Seasonal statistics, such as seasonal pollen integral (SPIn), onset, duration and periods of high and very high concentrations, were calculated for all pollen types and regions. High days were further modelled with SPIn in a linear regression framework to investigate the connection between the strength of the season and number of days above high pollen thresholds. The tree pollen season occurred between January and mid-July, with the pollen aeroallergens birch and pine being the most prominent in all regions. The herb pollen season was observed to occur between June and mid-August, although mugwort was almost completely absent. The grass pollen season was mostly mild on average but more severe in some regions, primarily Kristiansand. South-east regions of Oslo, Kristiansand and Lillehammer had the overall highest pollen load, while northern regions of Bodø, Tromsø and Kirkenes had the overall lowest pollen loads. SPIn and days above high pollen thresholds had positive highly significant relationships (R2 > 0.85) for all pollen types, bar mugwort. Regional pollen calendars and seasonal statistics contribute to reliable information that can be used by medical professionals to effectively and timely manage and treat seasonal pollen allergies in Norway. Further research is needed to determine sensitization profiles of pine and willow.

To document

Abstract

Climate change is and will continue to alter plant responses to their environment. This is especially prominent concerning the adaptive tracking in reproductive phenology. For wind pollinated plants, this will substantially influence their pollen seasonality, yet there are gaps in knowledge about how environmental variation influences pollen seasonality. To investigate this, we monitored daily atmospheric pollen concentrations of seven pollen types from ecologically, economically and allergenically important plants (alder, hazel, willow, birch, pine, grass and mugwort) in twelve Norwegian locations spanning the entire country for up to 28 years. Six daily meteorological variables (maximum temperature, precipitation, wind speed, relative humidity, solar radiation and atmospheric pressure) was obtained from the MET Nordic dataset with full data cover. The pollen seasonality was then modelled using four spatial, three temporal and the six meteorological variables in a generalized linear model approach with a negative binomial distribution to investigate how each variable group thematically and individually contribute to variation in pollen seasonality. We found that the full models explained the most variation, ranging from R2 = 20.3 % to 59.5 %. The models were also highly accurate, being able to predict 54.5 % to 99.1 % of daily pollen concentrations to within 20.1 pollen grains/m3. Overall, the temporal variables were able to explain more variation than spatial and meteorological variables for most pollen types. Month, altitude and maximum temperature were the most important single variables for each category. The importance of each variable could be traced back to their individual effects of reproductive phenology, plant metabolism, species distributions and pollen release processes. We further emphasise the importance of source maps and atmospheric regional transport models in further model improvements. By understanding the relevance of environmental variation to pollen seasonality we can make better predictions regarding the consequences of climate change on plant populations.

To document

Abstract

To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.

To document

Abstract

Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.