Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

The study intended to compare repellency of three insecticides on bumble bees and honey bees in Norwegian red clover (Trifolium pratense L.) seed crops, and to examine effects of thiacloprid on bumble bee colony development in the field. The repellency study was carried out in a largescale field trial in SE Norway in 2013. On average for observations during the first week after spraying, 17 and 40% less honey bees (P = .03) and 26 and 20% less bumble bees (P = .36) were observed on plots sprayed with the pyrethroids lambda-cyhalothrin and alpha-cypermethrin, respectively, than on unsprayed control plots. No pollinator repellency was found on plots sprayed with the neonicotinoid thiacloprid. Compared with unsprayed control the seed yield increases were 22% on plots sprayed with thiacloprid vs. 12–13% on plots sprayed with pyrethroids (P = .10). Follow-up studies in 2014–2016 focused on the effect of thiacloprid on bumble bee colony development in commercially reared nests of Bombus terrestris placed into red clover seed crops at the start of flowering. Unsprayed control crops were compared with crops sprayed either at the bud stage or when 18–44% of flower heads were in full bloom. Chemical analyses of adult bumble bees showed that thiacloprid was taken up in bees when crops were sprayed during flowering, but not detected when crops were sprayed at the bud stage. The bumble bees in late-sprayed crops also developed weaker colonies than in unsprayed crops. Dead bees with a high internal concentration of thiacloprid were found in one crop sprayed during the night at 35% flowering. This shows that thiacloprid is not bee-safe if sprayed after anthesis and that spraying has to be conducted at the bud stage to reduce its contamination of nectar and pollen.

To document

Abstract

The abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) has increased in coastal grasslands in Norway over recent decades, and their spread has coincided with increased precipitation in the region. Especially in water‐saturated, peaty soils, it appears from field observations that productive grasses cannot compete effectively with such rapidly growing rush plants. In autumn–winters of 2012–2013 and 2013–2014, a four‐factor, randomised block greenhouse experiment was performed to investigate the effect of different soil moisture regimes and organic matter contents on competition between these rush species and smooth meadow‐grass (Poa pratensis). The rush species were grown in monoculture and in competition with the meadow‐grass, using the equivalent of full and half the recommended seed rate for the latter. After about three months, above‐ and below‐ground dry matter was measured. J. effusus had more vigorous growth, producing on average 23–40% greater biomass in both fractions than J. conglomeratus. The competitive ability of both rush species declined with decreasing soil moisture; at the lowest levels of soil moisture, growth reductions were up to 93% in J. conglomeratus and 74% in J. effusus. Increasing water level in peat–sand mixture decreased competivitiveness of meadow‐grass, while pure peat, when moist, completely impeded its below‐ground development. These results show that control of rush plants through management may only be achieved if basic soil limitations have been resolved.

Abstract

Occasionally, high mycotoxin levels are observed in Norwegian oat grain lots. The development of moderate resistant oat cultivars is therefore highly valued in order to increase the share of high quality grain into the food and feed industry. The Norwegian SafeOats project (2016-2020) aims to develop resistance screening methods to facilitate the phase-out of Fusarium-susceptible oat germplasm. Furthermore, SafeOats will give new insight into the biology of F. langsethiae and HT2+T2 accumulation in oats. The relative ranking of oat varieties according to F. graminearum/DON versus F. langsethiae/HT2+T2 content has been explored in naturally infested as well as in inoculated field trials. Routine testing of the resistance to F. graminearum in oat cultivars and breeding lines has been conducted in Norway since 2007. We are currently working on ways to scale up the inoculum production and fine tune the methodology of F. langsethiae inoculation of field trials to be routinely applied in breeding programs. Through greenhouse studies, we have analysed the content of Fusarium DNA and mycotoxins in grains of selected oat varieties inoculated at different development stages. Furthermore, we are studying the transcriptome during F. langsethiae and F. graminearum infestation of oats. The project also focus on the occurrence of F. langsethiae in oat seeds and possible influence of the fungus on seedling development in a selection of oat varieties. On average, the fungus was observed on 5% of the kernels in 168 seed lots tested during 2016-2018. No indication of transmission of F. langsethiae from germinating seed to seedlings was found in a study with germination of naturally infected seeds. So far, the studies have shown that the ranking of oat varieties according to HT2+T2 content in non-inoculated field trials resembles the ranking observed in inoculated field trials. The ranking of oat varieties according to DON content is similar in non-inoculated and F. graminearum inoculated field trials. However, the ranking of oat varieties according to DON content does not resemble the ranking for HT2+T2. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry. The project is financed by The Foundation for Research Levy on Agricultural Products/Agricultural Agreement Research Fund/Research Council of Norway with support from the industry partners Graminor, Lantmännen, Felleskjøpet Agri, Felleskjøpet Rogaland & Agder, Fiskå Mølle Moss, Norgesmøllene, Strand Unikorn/Norgesfôr and Kimen Seed Laboratory.

2018