Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
No abstract has been registered
Authors
Ingerd Skow Hofgaard Heidi Udnes Aamot Morten Lillemo Guro Brodal Erik Lysøe Marit Almvik Anne-Grete Roer Hjelkrem Mauritz Åssveen Aina Lundon Russenes Einar Strand Åsmund Bjørnstad Helge Skinnes Selamawit Tekle Espen Sannes Sørensen Trond Buraas Alf Ceplitis Birgitte Henriksen Bernd Rodemann Simon G. EdwardsAbstract
Occasionally, high mycotoxin levels are observed in Norwegian oat grain lots. The development of moderate resistant oat cultivars is therefore highly valued in order to increase the share of high quality grain into the food and feed industry. The Norwegian SafeOats project (2016-2020) aims to develop resistance screening methods to facilitate the phase-out of Fusarium-susceptible oat germplasm. Furthermore, SafeOats will give new insight into the biology of F. langsethiae and HT2+T2 accumulation in oats. The relative ranking of oat varieties according to F. graminearum/DON versus F. langsethiae/HT2+T2 content has been explored in naturally infested as well as in inoculated field trials. Routine testing of the resistance to F. graminearum in oat cultivars and breeding lines has been conducted in Norway since 2007. We are currently working on ways to scale up the inoculum production and fine tune the methodology of F. langsethiae inoculation of field trials to be routinely applied in breeding programs. Through greenhouse studies, we have analysed the content of Fusarium DNA and mycotoxins in grains of selected oat varieties inoculated at different development stages. Furthermore, we are studying the transcriptome during F. langsethiae and F. graminearum infestation of oats. The project also focus on the occurrence of F. langsethiae in oat seeds and possible influence of the fungus on seedling development in a selection of oat varieties. On average, the fungus was observed on 5% of the kernels in 168 seed lots tested during 2016-2018. No indication of transmission of F. langsethiae from germinating seed to seedlings was found in a study with germination of naturally infected seeds. So far, the studies have shown that the ranking of oat varieties according to HT2+T2 content in non-inoculated field trials resembles the ranking observed in inoculated field trials. The ranking of oat varieties according to DON content is similar in non-inoculated and F. graminearum inoculated field trials. However, the ranking of oat varieties according to DON content does not resemble the ranking for HT2+T2. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry. The project is financed by The Foundation for Research Levy on Agricultural Products/Agricultural Agreement Research Fund/Research Council of Norway with support from the industry partners Graminor, Lantmännen, Felleskjøpet Agri, Felleskjøpet Rogaland & Agder, Fiskå Mølle Moss, Norgesmøllene, Strand Unikorn/Norgesfôr and Kimen Seed Laboratory.
Authors
Morten Lillemo Selamawit Tekle Espen Sannes Sørensen Trond Buraas Heidi Udnes Aamot Ingerd Skow Hofgaard Bernd Rodemann Alf Ceplitis Helge Skinnes Åsmund BjørnstadAbstract
No abstract has been registered
Abstract
Aims Bacterial decays of onion bulbs have serious economic consequences for growers, but the aetiologies of these diseases are often unclear. We aimed to determine the role of Rahnella, which we commonly isolated from bulbs in the United States and Norway, in onion disease. Methods and Results Isolated bacteria were identified by sequencing of housekeeping genes and/or fatty acid methyl ester analysis. A subset of Rahnella spp. strains was also assessed by multilocus sequence analysis (MLSA); most onion strains belonged to two clades that appear closely related to R. aquatilis. All tested strains from both countries caused mild symptoms in onion bulbs but not leaves. Polymerase chain reaction primers were designed and tested against strains from known species of Rahnella. Amplicons were produced from strains of R. aquatilis, R. victoriana, R. variigena, R. inusitata and R. bruchi, and from one of the two strains of R. woolbedingensis. Conclusions Based on binational testing, strains of Rahnella are commonly associated with onions, and they are capable of causing mild symptoms in bulbs. Significance and Impact of the Study While Rahnella strains are commonly found within field‐grown onions and they are able to cause mild symptoms, the economic impact of Rahnella‐associated symptoms remains unclear.
Abstract
No abstract has been registered
Authors
Arne Stensvand Aruppillai Suthaparan Belachew Asalf Tadesse Ranjana Pathak Hans Ragnar Gislerød Knut Asbjørn Solhaug Pål Johan From Rodrigo B. Onofre Natalia A. Peres William Turechek Andrew Bierman Lance Cadle-Davidson David M. GadouryAbstract
No abstract has been registered
Authors
Arne Stensvand Aruppillai Suthaparan Belachew Asalf Tadesse Ranjana Pathak Hans Ragnar Gislerød Knut Asbjørn Solhaug Pål Johan From Rodrigo B. Onofre Natalia A. Peres William Turechek Andrew Bierman Mark Rea Lance Cadle-Davidson David M. GadouryAbstract
No abstract has been registered
Authors
Roman Gebauer Daniel Volařík Josef Urban Isabella Børja Nina Elisabeth Nagy Toril Drabløs Eldhuset Paal KrokeneAbstract
Several studies have looked at how individual environmental factors influence needle morphology in conifer trees, but interacting effects between drought and canopy position have received little attention. In this study, we characterized morphological responses to experimentally induced drought stress in sun exposed and shaded current-year Norway spruce needles. In the drought plot trees were suffering mild drought stress, with an average soil water potential at 50 cm depth of -0.4 MPa. In general, morphological needle traits had greater values in sun needles in the upper canopy than in shaded needles in the lower canopy. Needle morphology 15 months after the onset of drought was determined by canopy position, as only sun needle morphology was affected by drought. Thus, canopy position was a stronger morphogenic factor determining needle structure than was water availability. The largest influence of mild drought was observed for needle length, projected needle area and total needle area, which all were reduced by ~27% relative to control trees. Needle thickness and needle width showed contrasting sensitivity to drought, as drought only affected needle thickness (10% reduction). Needle dry mass, leaf mass per area and needle density were not affected 15 months after the onset of mild drought. Our results highlight the importance of considering canopy position as well as water availability when comparing needle structure or function between conifer species. More knowledge about how different canopy parts of Norway spruce adapt to drought is important to understand forest productivity under changing environmental conditions.
Abstract
S. 47 i . https://www.iufro.org/fileadmin/material/publications/proceedings-archive/20209-ctre-proceedings-19.pdf