Einar Strand
Senior Adviser (OAP Agreement)
Authors
Einar StrandAbstract
No abstract has been registered
Abstract
VIPS is a technology platform for prognosis, monitoring and decision support for integrated pest management in crops in Norway. The service facilitates access to a Danish decision support tool, IPMwise, for the management of weeds. This tool, called VIPS-weeds in Norway, is adjusted to the Norwegian conditions for cereals. VIPS-weeds selects and adjusts the dose of herbicides according to weed species, weed density and temperature. The tool is being tested each year for local adaptations and updating. In 2021, four experiments were performed in spring wheat and barley. The experiments were designed in completely randomised blocks with three replications, and each included a control (unsprayed), a VIPS-weeds, and an adviser choice plot as well as plots for a variety of herbicides that are common in these crops. The weed species and density, development stage and possible herbicide resistance of each species in the control plots as well as crop information and temperature data were registered in VIPS-weeds three days before the normal spraying time. The suggested herbicides (set to be suggested based on the price) were applied to the VIPS-weeds plots. The effect of suggested herbicides and their dose was assessed as the reduction of weed coverage (%) in sprayed plots compared to the control plots 3-4 weeks after spraying. The average efficacy targets for the weed species (observed at least in two fields) Spergula arvensis, Viola sp., Stellaria media, Galeopsis sp., Chenopodium album, and Fumaria officinalis were predicted to be at 91, 84, 65, 83, 80, and 72% respectively, by VIPS-weeds. The results showed an average efficacy of 45, 58, 79, 80, 91 and 82% for these weeds, respectively. The VIPS-weeds solution was economically reasonable and gave similar results as adviser choice in terms of weed control and yield.
Authors
Ingerd Skow Hofgaard Heidi Udnes Aamot Morten Lillemo Guro Brodal Erik Lysøe Marit Almvik Anne-Grete Roer Hjelkrem Mauritz Åssveen Aina Lundon Russenes Einar Strand Åsmund Bjørnstad Helge Skinnes Selamawit Tekle Espen Sannes Sørensen Trond Buraas Alf Ceplitis Birgitte Henriksen Bernd Rodemann Simon G. EdwardsAbstract
Occasionally, high mycotoxin levels are observed in Norwegian oat grain lots. The development of moderate resistant oat cultivars is therefore highly valued in order to increase the share of high quality grain into the food and feed industry. The Norwegian SafeOats project (2016-2020) aims to develop resistance screening methods to facilitate the phase-out of Fusarium-susceptible oat germplasm. Furthermore, SafeOats will give new insight into the biology of F. langsethiae and HT2+T2 accumulation in oats. The relative ranking of oat varieties according to F. graminearum/DON versus F. langsethiae/HT2+T2 content has been explored in naturally infested as well as in inoculated field trials. Routine testing of the resistance to F. graminearum in oat cultivars and breeding lines has been conducted in Norway since 2007. We are currently working on ways to scale up the inoculum production and fine tune the methodology of F. langsethiae inoculation of field trials to be routinely applied in breeding programs. Through greenhouse studies, we have analysed the content of Fusarium DNA and mycotoxins in grains of selected oat varieties inoculated at different development stages. Furthermore, we are studying the transcriptome during F. langsethiae and F. graminearum infestation of oats. The project also focus on the occurrence of F. langsethiae in oat seeds and possible influence of the fungus on seedling development in a selection of oat varieties. On average, the fungus was observed on 5% of the kernels in 168 seed lots tested during 2016-2018. No indication of transmission of F. langsethiae from germinating seed to seedlings was found in a study with germination of naturally infected seeds. So far, the studies have shown that the ranking of oat varieties according to HT2+T2 content in non-inoculated field trials resembles the ranking observed in inoculated field trials. The ranking of oat varieties according to DON content is similar in non-inoculated and F. graminearum inoculated field trials. However, the ranking of oat varieties according to DON content does not resemble the ranking for HT2+T2. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry. The project is financed by The Foundation for Research Levy on Agricultural Products/Agricultural Agreement Research Fund/Research Council of Norway with support from the industry partners Graminor, Lantmännen, Felleskjøpet Agri, Felleskjøpet Rogaland & Agder, Fiskå Mølle Moss, Norgesmøllene, Strand Unikorn/Norgesfôr and Kimen Seed Laboratory.