
Overvåking av askeskuddsyke
Askeskuddsyken har herjet i Europa siden tidlig 1990-tallet. Den ble først oppdaget i Polen og har siden spredt seg gjennom de fleste områdene i Europa hvor vanlig ask forekommer. Askeskuddsyken truer aska på hele det europeiske kontinentet, og aska er nå rødlistet i mange land. Askeskuddsyke forårsakes av en liten begersopp, askeskuddbeger. Askeskuddbeger er et eksempel på en invaderende, fremmed art som har forårsaket store skader utafor sitt naturlige utbredelsesområde i Asia, og selv om den kan spre seg naturlig over store avstander med sine sporer, har spredningen blitt godt hjulpet av import og handel med infiserte askeplanter.

Soppen utvikler små begre på fjorårets askebladstilker i skogbunnen og den kan spre seg naturlig over store avstander med sine sporer. Sporene infiserer bladene på asketrærne i løpet av vekstsesongen, og soppen sprer seg derfra videre til greinene og til stammen. Infeksjonen forårsaker nekroser i bladene og bladstilkene, og i vinterhvilen i greinene og stammen med bladvisning og skudd- og greinavdøing som følge. Gjentatte angrep over flere år vil til slutt kunne drepe hele treet, ofte i samspill med andre faktorer.
Askeskuddbeger er vanlig i Øst-Asia på bl.a. mandsjuriaask (Fraxinus mandshurica), hvor den kun forårsaker harmløse bladflekkskader. Askeskuddbeger er et eksempel på en invaderende art som oppfører seg annerledes i møte med en ny vert og som har forårsaket store skader utafor sitt naturlige utbredelsesområde. Den har blitt en trussel for europeisk ask (F. excelsior) etter at den har spredd seg med rekordfart gjennom Europa, godt hjulpet av import og handel med infiserte askeplanter. Tilbakegangen av ask og påfølgende treslagsskifte har store implikasjoner for det europeiske skogbruket, men også for biomangfoldet siden det er hundrevis av arter som er knyttet til ask, og ask er nå rødlistet i mange land. I dag er det kun noen få regioner igjen i Europa som ennå ikke er berørt av denne sykdommen.
Siden 2009 har vi fulgt spredningen av askeskuddsyke nordover på Vestlandet og sykdomsutviklingen på enkelttrær og i bestand på våre overvåkingsflater på Øst-, Sør- og Vestlandet. Vi har også overvåket soppens sporespredning i to askebestand i Ås og i Bergen/Fana over flere år.
Les mer om askeskuddsyke i våre årlige rapporter fra skogskadeovervåkingen og i vår serie med faktaark (NIBIO POP 3(2–7) 2017).
Publikasjoner
Forfattere
Jan Peter George Mari Rusanen Egbert Beuker Leena Yrjänä Volkmar Timmermann Nenad Potočić Sakari Välimäki Heino KonradSammendrag
Ash dieback (ADB) has been threatening populations of European ash (Fraxinus excelsior & F. angustifolia) for more than three decades. Although much knowledge has been gathered in the recent past, practical conservation measures have been mostly implemented at local scale. Since range contraction in both ash species is likely to be exacerbated already in the near future by westward expansion of the emerald ash borer and climate change, systematic conservation frameworks need to be developed to avoid long-term population-genetic consequences and depletion of genomic diversity. In this article, we address the advantages and obstacles of conservation approaches aiming to conserve genetic diversity in situ or ex situ during tree pandemics. We are reviewing 47 studies which were published on ash dieback to unravel three important dimensions of ongoing conservation approaches or perceived conservation problems: i) conservation philosophy (i.e. natural selection, resistance breeding or genetic conservation), ii) the spatial scale (ecosystem, country, continent), and iii) the integration of genetic safety margins in conservation planning. Although nearly equal proportions of the reviewed studies mention breeding or active conservation as possible long-term solutions, only 17 % consider that additional threats exist which may further reduce genetic diversity in both ash species. We also identify and discuss several knowledge gaps and limitations which may have limited the initiation of conservation projects at national and international level so far. Finally, we demonstrate that there is not much time left for filling these gaps, because European-wide forest health monitoring data indicates a significant decline of ash populations in the last 5 years.
Forfattere
Chatchai Kosawang Isabella Børja Maria-Luz Herrero Nina Elisabeth Nagy Lene R. Nielsen Halvor Solheim Volkmar Timmermann Ari HietalaSammendrag
Introduction: The ascomycete Hymenoscyphus fraxineus, originating from Asia, is currently threatening common ash (Fraxinus excelsior) in Europe, massive ascospore production from the saprotrophic phase being a key determinant of its invasiveness. Methods: To consider whether fungal diversity and succession in decomposing leaf litter are affected by this invader, we used ITS-1 metabarcoding to profile changes in fungal community composition during overwintering. The subjected ash leaf petioles, collected from a diseased forest and a healthy ash stand hosting the harmless ash endophyte Hymenoscyphus albidus, were incubated in the forest floor of the diseased stand between October 2017 and June 2018 and harvested at 2–3-month intervals. Results: Total fungal DNA level showed a 3-fold increase during overwintering as estimated by FungiQuant qPCR. Petioles from the healthy site showed pronounced changes during overwintering; ascomycetes of the class Dothideomycetes were predominant after leaf shed, but the basidiomycete genus Mycena (class Agaricomycetes) became predominant by April, whereas H. albidus showed low prevalence. Petioles from the diseased site showed little change during overwintering; H. fraxineus was predominant, while Mycena spp. showed increased read proportion by June. Discussion: The low species richness and evenness in petioles from the diseased site in comparison to petioles from the healthy site were obviously related to tremendous infection pressure of H. fraxineus in diseased forests. Changes in leaf litter quality, owing to accumulation of host defense phenolics in the pathogen challenged leaves, and strong saprophytic competence of H. fraxineus are other factors that probably influence fungal succession. For additional comparison, we examined fungal community structure in petioles collected in the healthy stand in August 2013 and showing H. albidus ascomata. This species was similarly predominant in these petioles as H. fraxineus was in petioles from the diseased site, suggesting that both fungi have similar suppressive effects on fungal richness in petiole/rachis segments they have secured for completion of their life cycle. However, the ability of H. fraxineus to secure the entire leaf nerve system in diseased forests, in opposite to H. albidus, impacts the general diversity and successional trajectory of fungi in decomposing ash petioles.
Forfattere
Ari Hietala Ahto Agan Nina Elisabeth Nagy Isabella Børja Volkmar Timmermann Rein Drenkhan Halvor SolheimSammendrag
The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1–2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.
Sammendrag
European ash (Fraxinus excelsior) and narrow-leafed ash (F. angustifolia) are keystone forest tree species with a broad ecological amplitude and significant economic importance. Besides global warming both species are currently under significant threat by an invasive fungal pathogen that has been spreading progressively throughout the continent for almost three decades. Ash dieback caused by the ascomycete Hymenoscyphus fraxineus is capable of damaging ash trees of all age classes and often ultimately leads to the death of a tree after years of progressively developing crown defoliation. While studies at national and regional level already suggested rapid decline of ash populations as a result of ash dieback, a comprehensive survey at European level with harmonized crown assessment data across countries could shed more light into the population decline from a pan-European perspective and could also pave the way for a new conservation strategy beyond national boarders. Here we present data from the ICP Forests Level I crown condition monitoring from 27 countries resulting in > 36,000 observations. We found a substantial increase in defoliation and mortality over time indicating that crown defoliation has almost doubled during the last three decades. Hotspots of mortality are currently situated in southern Scandinavia and north-eastern Europe. Overall survival probability after nearly 30 years of infection has already reached a critical value of 0.51, but with large differences among regions (0.20–0.86). Both a Cox proportional hazard model as well as an Aalen additive regression model strongly suggest that survival of ash is significantly lower in locations with excessive water regime and which experienced more extreme precipitation events during the last two decades. Our results underpin the necessity for fast governmental action and joint rescue efforts beyond national borders since overall mean defoliation will likely reach 50% as early as 2030 as suggested by time series forecasting.
Sammendrag
The ascomycete Hymenoscyphus fraxineus has spread across most of the host range of European ash with a high level of mortality, causing important economic, cultural and environmental effects. We present a novel method combining a Monte-Carlo approach with a generalised additive model that confirms the importance of meteorology to the magnitude and timing of H. fraxineus spore emissions. The variability in model selection and the relative degree to which our models are over- or under-fitting the data has been quantified. We find that both the daily magnitude and timing of spore emissions are affected by meteorology during and prior to the spore emission diurnal peak. We found the daily emission magnitude has the strongest associations to weekly average net radiation and leaf moisture before the emission, soil temperature during the day before emission and net radiation during the spore emission. The timing of the daily peak in spore emissions has the strongest associations to net radiation both during spore emission and in the day preceding the emission. The seasonal peak in spore emissions has a near-exponential increase/decrease, and the mean daily emission peak is approximately Gaussian.
Forfattere
Ahto Agan Rein Drenkhan Kalev Adamson Leho Tedersoo Halvor Solheim Isabella Børja Iryna Matsiakh Volkmar Timmermann Nina Elisabeth Nagy Ari HietalaSammendrag
European ash (Fraxinus excelsior) is threatened by the invasive ascomycete Hymenoscyphus fraxineus originating from Asia. Ash leaf tissues serve as a route for shoot infection but also as a sporulation substrate for this pathogen. Knowledge of the leaf niche partitioning by indigenous fungi and H. fraxineus is needed to understand the fungal community receptiveness to the invasion. We subjected DNA extracted from unwashed and washed leaflets of healthy and diseased European ash to PacBio sequencing of the fungal ITS1-5.8S-ITS2 rDNA region. Leaflets from co-inhabiting rowan trees (Sorbus aucuparia) served as a reference. The overlap in leaflet mycobiomes between ash and rowan was remarkably high, but unlike in rowan, in ash leaflets the sequence read proportion, and the qPCR-based DNA amount estimates of H. fraxineus increased vigorously towards autumn, concomitant with a significant decline in overall fungal richness. The niche of ash and rowan leaves was dominated by epiphytic propagules (Vishniacozyma yeasts, the dimorphic fungus Aureobasidion pullulans and the dematiaceous hyphomycete Cladosporium ramotenellum and H. fraxineus), and endophytic thalli of biotrophs (Phyllactinia and Taphrina species), the indigenous necrotroph Venturia fraxini and H. fraxineus. Mycobiome comparison between healthy and symptomatic European ash leaflets revealed no significant differences in relative abundance of H. fraxineus, but A. pullulans was more prevalent in symptomatic trees. The impacts of host specificity, spatiotemporal niche partitioning, species carbon utilization profiles and life cycle traits are discussed to understand the ecological success of H. fraxineus in Europe. Further, the inherent limitations of different experimental approaches in the profiling of foliicolous fungi are addressed.
Forfattere
Olalla Díaz-Yáñez Blas Mola-Yudego Volkmar Timmermann Mari Mette Tollefsrud Ari Hietala Jonas OlivaSammendrag
Determining the impacts of invasive pathogens on tree mortality and growth is a difficult task, in particular in the case of species occurring naturally at low frequencies in mixed stands. In this study, we quantify such effects by comparing national forest inventory data collected before and after pathogen invasion. In Norway, Fraxinus excelsior is a minor species representing less than 1% of the trees in the forests and being attacked by the invasive pathogen Hymenoscyphus fraxineus since 2006. By studying deviations between inventories, we estimated a 74% higher-than-expected average ash mortality and a 13% slower-than-expected growth of the surviving ash trees, indicating a lack of compensation by the remaining ash. We could confidently assign mortality and growth losses to ash dieback as no mortality or growth shifts were observed for co-occurring tree species in the same plots. The mortality comparisons also show regional patterns with higher mortality in areas with the longest disease history in Norway. Considering that ash is currently mostly growing in mixed forests and that no signs of compensation were observed by the surviving ash trees, a significant habitat loss and niche replacement could be anticipated in the mid-term.
Sammendrag
Dieback of European ash, caused by the ascomycete Hymenoscyphus fraxineus originating from Asia, has rapidly spread across Europe, and is threatening this keystone tree at a continental scale. High propagule pressure is characteristic to invasive species. Consistently, the enormous production of windborne ascospores by H. fraxineus in an ash forest with epidemic level of disease obviously facilitates its invasiveness and long distance spread. To understand the rate of build-up of propagule pressure by this pathogen following its local introduction, during 2011–2017 we monitored its sporulation at a newly infested ash stand in south-western Norway characterized with mild winters and cool summers. We also monitored the propagule pressure by Hymenoscyphus albidus, a non-pathogenic native species that competes for the same sporulation niche with H. fraxineus. During the monitoring period, crown condition of ash trees had impaired, and 20% of the dominant trees were severely damaged in 2017. H. fraxineus showed an exponential increase in spore production between 2012 and 2015, followed by drastic decline in 2016 and 2017. During 2011–2013, the two Hymenoscyphus species showed similar sporulation level, but thereafter spores of H. albidus were no longer detected. The data suggest that following local introduction, the population of H. fraxineus reaches rapidly an exponential growth stage if the local weather conditions are favorable for ascomata maturation across years. In the North Atlantic climate, summer temperatures critically influence the pathogen infection pressure, warm summers allowing the population to grow according to its biotic potential, whereas cold summers can cause a drastic decline in propagule pressure.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Askeskuddsjuke forårsakes av en liten sopp, Hymenoscyphus fraxineus, på norsk kalt askeskuddbeger. Sjukdommen har i løpet av kort tid spredd seg over store deler av Europas askeskoger. Soppen er en fremmed art som trolig stammer fra Asia hvor den er assosiert med asketrær som er nær beslektet med europeisk ask. Det er særlig unge trær som er utsatt, men også eldre trær kan drepes over tid. Mye er uklart angående hvordan soppen infiserer, men sporene spres med vind til bladene på asketrær. Dersom soppen klarer å vokse forbi bladfestet før bladfall vil den i løpet av vinteren angripe greinene. Typiske symptomer er sår i barken og døde skudd.
Sammendrag
Askeskuddsjuke, som forårsakes av en liten, innført begersopp, har i løpet av ca. 10 år spredt seg gjennom mesteparten av askas utbredelsesområde i Norge, fra Østlandet opp til Nordmøre. I 2016 var bare Trøndelag fortsatt fri for sjukdommen. Etter sju år med overvåking av askeskuddsjuke ser vi at skadeutviklingen på enkelttrær og i bestand skjer fort, også i områder hvor sjukdommen bare har vært til stede i noen få år. Skadeomfanget øker fra år til år, trær i alle aldersklasser angripes og dødeligheten er høy, særlig blant de yngste trærne. Fortsatt holder likevel noen trær seg friske, noe som kan gi håp om at det finnes motstandsdyktige individer som vil overleve epidemien. Som genressursbevaringstiltak har vi samlet inn frø fra de friske trærne i overvåkingsflatene, samt fra Hindrum i Nord-Trøndelag, et av Norges nordligste naturlige askebestand.
Sammendrag
Askeskuddsjuke har spredd seg med rekordfart i Europa og i Norge. Ask (Fraxinus excelsior) er meget sensitiv for denne nye sjukdommen. De aller fleste områder i Europa med dette treslaget er nå infisert med sekksporesoppen askeskuddbeger (Hymenoscyphus fraxineus) som forårsaker sjukdommen. I Norge ble askeskuddsjuke første gang registrert i 2008 og allerede da ble den funnet over store deler av Østlandet og Sørlandet. Deretter har askeskuddsjuke spredd seg nordover på Vestlandet i gjennomsnitt 51 km per år. I 2016 ble det nordligste funnet registrert i Aure kommune nær grensa til Trøndelag.
Sammendrag
De norske askeskogene er en nordlig utløper av større askeskoger i Europa som spredte seg nordover etter siste istid. Vi har undersøkt genetisk variasjon i ask (Fraxinus excelsior) og funnet at asken i Norge fulgte en østlig innvandringsvei fra overvintringsområder i SørøstEuropa. Mens den genetiske variasjonen i stor grad ble opprettholdt gjennom Europa, gikk svært mye av den genetiske variasjonen tapt nordover langs kysten av Norge, hvor vi også finner de største genetiske forskjellene mellom askepopulasjonene. Kunnskap om askens genetiske variasjon er verdifull for forvaltningen med tanke på framtidig restaurering og bevaring av genetiske ressurser nå som asken er truet av askeskuddsjuke.
Forfattere
Isabella Børja Volkmar Timmermann Ari Hietala Mari Mette Tollefsrud Nina Elisabeth Nagy Adam Vivian-Smith Hugh Cross Jørn Henrik Sønstebø Tor Myking Halvor SolheimSammendrag
In Norway the common ash (Fraxinus excelsior L.) has its northernmost distribution in Europe. It grows along the coastal range as small fragmented populations. The first occurrence of ash dieback caused by Hymenoscyphus fraxineus in Norway was reported in 2008. At that time, the disease had already spread through large areas of southern and south-eastern parts of Norway. Since then the disease continued spreading with a speed of about 50- 60 km per year along the western coastal range. To monitor the disease development over time, we established eight permanent monitoring plots in south-eastern and western Norway in 2009 and 2012, respectively. In all plots tree mortality was high, especially among the youngest trees in south-eastern Norway. The extent of crown damage has continually increased in all diameter classes for both regions. In 2009, 76.8 % of all trees on the five monitoring plots in south-eastern Norway were considered to be healthy or slightly damaged, and only 8.9 % to be severely damaged. In 2015, 51.7 % were dead, 13.5 % severely damaged and only 25.7 % remained healthy or slightly damaged. To assess the infection pressure and spore dispersal patterns of the pathogen, we used a Burkard volumetric spore sampler placed in an infested ash stand in southern Norway. We examined the airborne ascospores of H. fraxineus and H. albidus captured on the sampling tape microscopically and with real-time PCR assays specific to these fungi. We detected very few ascospores of H. albidus, whereas ascospores of H. fraxineus dominated throughout entire sampling periods of 2009, 2010 and 2011. Spore discharge occurred mainly between the hours of 5 and 8 a.m., though the distinctive sporulation had yearly variation between 5-7 a.m. We observed the same diurnal pattern throughout the entire sampling period, with a seasonal peak in spore liberation between mid-July and midAugust, after which the number of ascospores decreased substantially. Similar diurnal patterns were observed throughout the sampling period except that after mid-August the number of trapped ascospores substantially decreased. To compare the genetic pattern of common ash in the northern and central ranges of Europe we analyzed the Norwegian samples together with available samples from central Europe by using chloroplast and nuclear microsatellite markers. We found that the northern range of common ash was colonized via a single migration route that originated in eastern or south-eastern Europe with little influence originating from other southern or western European refugia. In the northern range margins, genetic diversity decreased and population differentiation increased, coherent with a post-glacial colonization history characterized by founder events and population fluctuations. Based on our findings we discuss the future management and conservational implications.
Sammendrag
Ash dieback, caused by the ascomycete Hymenoscyphus fraxineus, has been spreading throughout Europe since the early 1990s, threatening European ash at a continental scale. Little is known about the development of the disease in individual forest trees and in different age classes. In this study we monitored ash dieback on trees of different diameter classes in five permanent plots in ash stands in south-eastern Norway from 2009 to 2016, and from 2012 to 2016 in three plots in western Norway with a shorter disease history. Our results showed that more than 80% of the youngest and more than 40% of the intermediate future crop trees in the plots in south-eastern Norway were dead by 2016, while the disease development in large, dominant trees was slower. Although less damage has been observed in the plots in western Norway, the trend for the juvenile trees is the same as in south-eastern Norway with rapidly increasing damage and mortality. Most dead trees in south-eastern Norway were found at sites with high soil moisture and showed symptoms of root-rot caused by Armillaria species. Infected trees, both young and old ones, are weakened by the disease and appear to be more susceptible to other, secondary pathogens, especially under unfavourable site conditions.
Sammendrag
Ash dieback, caused by the ascomycete Hymenoscyphus fraxineus, was first observed in the eastern and southernmost Norway in 2008. Based on the age of stem bark lesions, it was concluded that the fungus had arrived to the region no later than 2006. Since 2008 the annual spread of the disease northwards along the west coast of Norway has been monitored. The registration was done each year during early summer around a disease frontier recorded in the previous year. The occurrence of necrotic bark lesions in the previous-year shoots and dieback of these shoots, and isolation of H. fraxineus from the discoloured wood associated with necrotic bark lesions were used as signs of ash dieback. These records indicate an annual spread of ash dieback in the range between 25 km and 78 km, and a mean annual spread of 51 km. The cause of the spread is discussed.
Sammendrag
Dieback of European ash (Fraxinus excelsior L.), a disease caused by the ascomycete Hymenoscyphus fraxineus (previously referred to as H. pseudoalbidus or Chalara fraxinea), was first observed in Poland in the early 1990ies, and is currently present almost throughout the entire distribution area of European ash. The characteristic symptoms of the disease include dead shoots with necrotic lesions in the bark and discoloration of xylem and pith but the seasonal dynamics of pathogen spread in shoot tissues remain poorly understood. To investigate whether the internal spread of the fungus involves season-specific patterns, saplings with necrotic bark lesions in 1-2 -year-old stem regions were collected during 2014-2015 at time intervals in spring, summer, autumn and winter at several localities in western Ukraine and at two localities in south-eastern Norway. Tissuespecific presence of H. fraxineus was determined by a highly sensitive quantitative real-time PCR assay that is specific to DNA of H. fraxineus. The relatively high proportion of bark samples positive for H. fraxineus in the saplings collected during spring provides support to a model that H. fraxineus can be a primary causative agent of bark lesions and that other fungi may eventually replace it in old infection areas.
Forfattere
Sandra Halecker Frank Surup Halvor Solheim Marc StadlerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Ten saplings of European ash (Fraxinus excelsior L.) naturally infected by the invasive ash dieback pathogen Hymenoscyphus fraxineus were collected in Ukraine and Norway and examined for bark necrosis and extension of discoloration in sapwood and pith in a stem region. Tissue-specific colonization profiles were determined by spatial analyses of symptomatic and visually healthy stem tissues using a H. fraxineus-specific qPCR assay and light microscopy. Our data suggest that hyphal growth in the starch-rich perimedullary pith is of particular importance for both axial and radial spread of H. fraxineus, but that most of its biomass accumulates in sapwood parenchyma. The study confirms the results from earlier work and presents new information that refines the current stem invasion model.
Sammendrag
Shoot dieback disease of European ash caused by the ascomycete Hymenoscyphus pseudoalbidus threatens ash on a continental scale. A spore sampler placed in a diseased ash forest in Southern Norway, coupled with microscopy and DNA-based fungal species-specific real-time PCR assays, was employed to profile diurnal and within-season variation in infection pressure by ascospores of H. pseudoalbidus and the potentially co-existing non-pathogenic Hymenoscyphusalbidus. Hymenoscyphus pseudoalbidus was found to be predominant in the stand. Massive simultaneous liberation, by active discharge of pathogen ascospores in the morning, peaked in mid-Jul. to mid-Aug. Accumulation of pathogen DNA on leaflets of current-year leaves reached a high level plateau phase before appearance of autumn coloration, suggesting that pathogen establishment in leaves is terminated before the onset of leaf senescence.
Forfattere
Alberto Santini Luisa Ghelardini Ciro De Pace Marie-Laure Desprez-Loustau Paolo Capretti Anne Chandelier Thomas Cech Danut Chira Stephanos Diamandis Talis Gaitnieks Jarkko Hantula Ottmar Holdenrieder Libor Jankovský Thomas Jung Dusan Jurc Thomas Kirisits Andrej Kunca Vaidotas Lygis Monika Malecka Benoit Marcais Sophie Schmitz Jörg Schumacher Halvor Solheim Alejandro Solla Ilona Szabò Panaghiotis Tsopelas Andrea Vannini Anna Maria Vettraino Joan Webber Stephen Woodward Jan StenlidSammendrag
A large database of invasive forest pathogens (IFPs) was developed to investigate the patterns and determinants of invasion in Europe. Detailed taxonomic and biological information on the invasive species was combined with country-specific data on land use, climate, and the time since invasion to identify the determinants of invasiveness, and to differentiate the class of environments which share territorial and climate features associated with a susceptibility to invasion. IFPs increased exponentially in the last four decades. Until 1919, IFPs already present moved across Europe. Then, new IFPs were introduced mainly from North America, and recently from Asia. Hybrid pathogens also appeared. Countries with a wider range of environments, higher human impact or international trade hosted more IFPs. Rainfall influenced the diffusion rates. Environmental conditions of the new and original ranges and systematic and ecological attributes affected invasiveness. Further spread of established IFPs is expected in countries that have experienced commercial isolation in the recent past. Densely populated countries with high environmental diversity may be the weakest links in attempts to prevent new arrivals. Tight coordination of actions against new arrivals is needed. Eradication seems impossible, and prevention seems the only reliable measure, although this will be difficult in the face of global mobility.
Sammendrag
Dieback of European ash (Fraxinus excelsior), caused by the ascomycete Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea), started around 1992 in Poland and has since then spread over large geographical areas. By November 2010, the disease had been recorded in 22 European countries. The gradual expansion and high intensity of the ash dieback epidemic in Europe may suggest that H. pseudoalbidus is an invasive alien organism. In Norway, ash dieback was first reported in spring 2008, and a survey in early summer of the same year revealed that the disease had spread over large parts of the southern and eastern regions of the country. The distance from the southernmost to the northernmost infected stands was, at that time, about 400 km. Some old necrotic lesions were also observed, indicating that the ash dieback pathogen is likely to have been present in Norway since at least 2006. In 2009, a spore sampler was installed in a diseased ash stand at Ås, South-Eastern Norway. Sampling started in late July and continued until late September. Large numbers of ascospores resembling those of H. pseudoalbidus were observed, with the maximum number of spores occurring from the end of July to mid-August. The deposition of ascospores occurred mainly between 6 and 8 a.m. Ascospores are most likely to be the primary source initiating host infections and responsible for the rapid recent spread of H. pseudoalbidus in Europe.
Sammendrag
The causative agent of dieback on European ash (Fraxinus excelsior) was first described as Chalara fraxinea based on cultural morphology because no sexual stage of the fungus was known. Later, based on culturing of ascospores of a candidate teleomorph, morphological comparison and nuclear ribosomal internal transcribed spacer sequencing, the sexual stage of C. fraxinea was assigned as Hymenoscyphus albidus, a native and widespread species in Europe. Recently, the morphological species concept of H. albidus was shown to cover two species that cannot be separated from each other based on teleomorph characters, but which can be distinguished by several DNA markers. As a result, the strains causing ash dieback were reassigned as H. pseudoalbidus. The closely related H. albidus is presumably a non-pathogenic endophyte, but pathogenicity tests to confirm this hypothesis have not yet been performed. Genotyping of herbarium specimens has shown that H. pseudoalbidus was present in Switzerland for at least a decade prior to the epidemic outbreak in Europe. The origin of the ash dieback pathogen, and the general importance of correct pathogen identification to development of effective disease control, are discussed.
Sammendrag
Det er ikke registrert sammendrag