Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Questions Field-based ecosystem mapping is prone to observer bias, typically resulting in a mismatch between maps made by different mappers, that is, inconsistency. Experimental studies testing the influence of site, mapping scale, and differences in experience level on inconsistency in field-based ecosystem mapping are lacking. Here, we study how inconsistencies in field-based ecosystem maps depend on these factors. Location Iškoras and Guollemuorsuolu, northeastern Norway, and Landsvik and Lygra, western Norway. Methods In a balanced experiment, four sites were field-mapped wall-to-wall to scales 1:5000 and 1:20,000 by 12 mappers, representing three experience levels. Thematic inconsistency was calculated by overlay analysis of map pairs from the same site, mapped to the same scale. We tested for significant differences between sites, scales, and experience-level groups. Principal components analysis was used in an analysis of additional map inconsistencies and their relationships with site, scale and differences in experience level and time consumption were analysed with redundancy analysis. Results On average, thematic inconsistency was 51%. The most important predictor for thematic inconsistency, and for all map inconsistencies, was site. Scale and its interaction with site predicted map inconsistencies, but only the latter were important for thematic inconsistency. The only experience-level group that differed significantly from the mean thematic inconsistency was that of the most experienced mappers, with nine percentage points. Experience had no significant effect on map inconsistency as a whole. Conclusion Thematic inconsistency was high for all but the dominant thematic units, with potentially adverse consequences for mapping ecosystems that are fragmented or have low coverage. Interactions between site and mapping system properties are considered the main reasons why no relationships between scale and thematic inconsistency were observed. More controlled experiments are needed to quantify the effect of other factors on inconsistency in field-based mapping.

Til dokument

Sammendrag

Didemnum vexillum is colonial sea squirt, a marine species which originates from the northwest Pacific; it was first recorded in Norway in November 2020. Didemnum vexillum is an alien species, meaning that it is a species that has been transferred from its original region to other regions of the world through human activity, and it had not previously been recorded in Norwegian waters. The species is regarded as having great invasive potential and having strong negative ecological effects on biodiversity. It is also considered to pose a risk to marine industries such as shipping and aquaculture, with possible major negative economic impacts.

Til dokument

Sammendrag

VKM has evaluated the risk to biodiversity from allowing private import and keeping of the Northern Cardinal as a caged bird in Norway, for birds acquired through the bird trade. VKM has reviewed the invasion ecology of non-native birds in general and of the Northern Cardinal specifically. The assessment includes evaluation of various mechanisms that invasive birds generally have a negative impact through, and includes competition, hybridization, spread of pathogens and interactions with other alien species in Norway. VKM has also evaluated two different scenarios establishment and how climate change can influence both the negative impact and the likelihood of establishment. Overall, VKM finds that there is low risk in regards negative effects on biodiversity in Norway in regard to import and keeping of the Northern Cardinal.

Til dokument

Sammendrag

VKM has evaluated to what extent keeping of cats pose a risk to biodiversity in Norway. Risks were assessed separately for threats to biodiversity from direct predation, indirect (non-lethal) effects, competition with other wildlife and spread of infectious organisms. VKM also assessed the risk of reduced animal welfare related to the keeping of domestic cats, both for the cats and their prey. In addition, VKM has assessed a range of risk-reducing measures aimed at minimizing the risk for negative impacts on biodiversity and animal welfare. Overall, VKM find that the risk of negative impact on vulnerable birds and red-listed mammalian species are high under certain conditions. VKM also find that there is a considerable risk associated with increased spread of infectious organisms from cats to wildlife and other domestic species. Some of these infectious organisms may also infect humans. With respect to mitigation measures, VKM concludes that measures focused on limiting cats’ access to prey populations are likely to yield the most positive outcomes in terms of mitigating the adverse impact on biodiversity.

Til dokument

Sammendrag

Metangassutslipp fra sau, storfe og geit utgjør rundt fire prosent av det totale norske klimagassutslippet. Mange av beregningene som utgjør grunnlaget for dette tallet, er imidlertid basert på utenlandske data, og det er flere forhold som ikke er tatt hensyn til.

Til dokument

Sammendrag

Key words: apiculture, biological control, Norwegian Environment Agency, Norwegian Scientific Committee for Food and Environment, predatory mites, risk assessment, varroa Introduction The Norwegian Environment Agency (NEA) have asked the Norwegian Scientific Committee for Food and Environment for an assessment of adverse impacts on biodiversity concerning import and release of the predatory mite Stratiolaelaps scimitus as measure against varroa mites (Varroa destructor) in apiaries. The predatory mite is already in use in Norwegian greenhouses and polytunnels as a biological control agent against dark-winged fungus gnats in a various of plant cultures. The NEA has received an application for a new type of use: to combat varroa mites in apiaries. Background Varroa destructor (the varroa mite) is a species of parasitic mite that feeds externally on honeybees; it is considered one of the major threats to beekeeping world-wide due to its parasitic behaviour and because it acts as a vector for several viral and bacterial bee pathogens. Beekeepers in North America have begun experimenting with introducing Stratiolaelaps scimitus, a commercially available predaceous mite originally used for biocontrol in greenhouses and polytunnels, to control varroa mites, and several studies on the use of the mite in this context have been published recently. The Norwegian Environment Agency has asked VKM to assess the risk to biological diversity in Norway associated with this new use of S. scimitus, and to assess the effects of climate change on any risks that are proposed. Stratiolaelaps scimitus is a tiny (0.5 mm), soil-dwelling predaceous mite that in nature feeds on a wide variety of soil invertebrates, including fly larvae, nematodes, nymphs of thrips, potworms (oligochaetes), springtails, and other mites. For over three decades, Stratiolaelaps scimitus has been produced commercially and the species is now used globally for biological control. The mite is applied to control a wide variety of organisms harmful to food production or to the production of ornamental plants, but especially to combat infestations of fungus gnat larvae, spider mites, flower thrips, and certain plant-feeding nematodes. The species is already used as a biocontrol agent in Norway in greenhouses, open plastic polytunnels used for protecting crops, and in various indoor plantings and fungiculture. Methods VKM established a project group with expertise in entomology, invasion ecology, honeybee behaviour and ecology, and risk analysis of biological control agents. The group conducted systematic literature searches and scrutinized the relevant literature that was found. In the absence of Norwegian studies, VKM relied on literature from other countries. Results and conclusions This VKM assessment concludes with medium confidence that introducing S. scimitus for use in beehives would not significantly increase the probability of establishment and spread of S. scimitus above that of its current use. We point out that there is no evidence that continuous use of S. scimitus in Norway, over decades, has led to its establishment outside of enclosures, including open polytunnels. The optimal temperature for development and reproduction is far higher than what is normally observed in Norway (~28 °C). Although lethal temperature has been reported to be as low as –5.2 °C, we still conclude that S. scimitus would not be able to establish permanent populations in Norway, not even in the southern part of the country as such temperatures are expected to occur in some years throughout the country. Future climate change is not believed to alter this conclusion, since periods with lethally cold temperatures are expected to still occur in the future.

2022

Til dokument

Sammendrag

The alpine treeline ecotone is expected to move upwards in elevation with global warming. Thus, mapping treeline ecotones is crucial in monitoring potential changes. Previous remote sensing studies have focused on the usage of satellites and aircrafts for mapping the treeline ecotone. However, treeline ecotones can be highly heterogenous, and thus the use of imagery with higher spatial resolution should be investigated. We evaluate the potential of using unmanned aerial vehicles (UAVs) for the collection of ultra-high spatial resolution imagery for mapping treeline ecotone land covers. We acquired imagery and field reference data from 32 treeline ecotone sites along a 1100 km latitudinal gradient in Norway (60–69°N). Before classification, we performed a superpixel segmentation of the UAV-derived orthomosaics and assigned land cover classes to segments: rock, water, snow, shadow, wetland, tree-covered area and five classes within the ridge-snowbed gradient. We calculated features providing spectral, textural, three-dimensional vegetation structure, topographical and shape information for the classification. To evaluate the influence of acquisition time during the growing season and geographical variations, we performed four sets of classifications: global, seasonal-based, geographical regional-based and seasonal-regional-based. We found no differences in overall accuracy (OA) between the different classifications, and the global model with observations irrespective of data acquisition timing and geographical region had an OA of 73%. When accounting for similarities between closely related classes along the ridge-snowbed gradient, the accuracy increased to 92.6%. We found spectral features related to visible, red-edge and near-infrared bands to be the most important to predict treeline ecotone land cover classes. Our results show that the use of UAVs is efficient in mapping treeline ecotones, and that data can be acquired irrespective of timing within a growing season and geographical region to get accurate land cover maps. This can overcome constraints of a short field-season or low-resolution remote sensing data.

Til dokument

Sammendrag

Background Spring hunting for ducks (Lodden in Northern Sami) is part of the Sami hunting and trapping culture. In Norway, this traditional hunting has been permitted in Kautokeino Municipality in accordance with the exception provision in the Wildlife Act Section 15, with quotas for males of several duck species. However, hunting in the spring may be in conflict with the Nature Diversity Act's principle for species management, saying (quote from Section 15): “Unnecessary harm and suffering caused to animals occurring in the wild and their nests, lairs and burrows shall be avoided. Likewise, unnecessary pursuing of wildlife shall be avoided.” Furthermore, in accordance with international legislation and agreements, the Wildlife Act (Section 9) states that the hunting season should not be set to the nesting and breeding season for the species in question. The Norwegian Environment Agency (NEA) asked VKM to (1) assess risk and risk-reducing measures on biodiversity and animal welfare when conducting spring hunting of ducks. The terms of reference were additionally clarified by the NEA to include assessments of the risks associated with hunting quotas of up to 150, 300, and 500 male individuals, on the populations of mallard (Anas platyrhynchos), tufted duck (Aythya fuligula), velvet scoter (Melanitta fusca), common scoter (Melanitta nigra), long-tailed duck (Clangula hyemalis), and red-breasted merganser (Mergus serrator). VKM was furthermore asked to (2) point out risk-reducing measures in scenarios with hunting bags corresponding to the mentioned quotas of all the six species. Method VKM appointed a project group to answer the request from NEA and assess the risks to biodiversity and animal welfare posed by spring hunting for adult male ducks. The project group narrowed down the scope of the biodiversity risk assessment to encompass risks for local populations of six target species: mallard, tufted duck, velvet scoter, common scoter, long-tailed duck, and red-breasted merganser, and non-target migratory waterbirds. Negative impacts on biodiversity was defined as negative effects on population viability. The VKM project group gathered data from publications retrieved from literature searches and reports from Kautokeino municipality to the Finnmark Estate (Finnmarkseiendommen), which were made available to the group by the Norwegian Environment Agency. Hunting statistics were acquired from Statistics Norway (Statistisk sentralbyrå; SSB). During the assessment, several critical knowledge gaps and uncertainties were identified. The main obstacle for assessment of the impact of spring hunting on viability of local populations in Kautokeino, is the lack of data on relevant population sizes and demographic rates for the six target species. The available population estimates are partly based on almost 30-year-old bird counts. In addition, knowledge about spatial and temporal distributions of each species, combined with local or remote-sensed data on ice breakup, is needed to estimate the proportion of the population being effectively hunted in early spring when ducks are congregating on available ice-free waters. Such knowledge, combined with information about where, when, how and by how many hunters the hunting is performed, is also critical for sound assessments of risk to biodiversity and harm to bird welfare. Improved data on hunting bags (reliable, spatially explicit, and detailed) and frequency of wounding and crippling is also needed to provide accurate assessments. The project group performed modelling of harvest scenarios for a range of conditions (e.g., number of birds harvested, reduced breeding success caused by indirect effects of disturbance, environmental stochasticity, and spatial variation in habitat) to assess how sensitive the populations are to different parameters and model assumptions. ..............................

Til dokument

Sammendrag

Background Since the late 1800s, an unknown number of common pheasants and grey partridges from captive bred stocks have been released in Norwegian nature. The birds are released to be used for training of pointing dogs. The import, keeping and release of gamebirds, as well as the management of release sites, have been largely unregulated. The consequences to biodiversity, animal health and welfare have not been investigated. The Norwegian Environment Agency (NEA) and the Norwegian Food Safety Authority (NFSA) have jointly requested the Norwegian Scientific Committee for Food and Environment (VKM) for a scientific opinion on the release of common pheasants and grey partridges for pointing dog training regarding consequences for biodiversity, animal welfare of the released birds and health of the released birds as well as wild birds to which pathogens may be transmitted. VKM was further asked to suggest risk reducing measures for biodiversity and animal welfare. Methods VKM established a project group with expertise within avian ecology, landscape ecology, population biology, wildlife veterinary medicine and animal welfare. The group conducted systematic literature searches, scrutinized the resulting literature, and supplemented by other relevant articles and reports. In the absence of Norwegian studies, VKM used literature from other countries where common pheasants and grey partridges (and in some cases other gamebirds), are released, as references. The project group applied observation data of common pheasants and grey partridges in Norway for the period 2000-2022, presented by the Norwegian Biodiversity Information Centre (NBIC). In the assessments, VKM assumed that the release of birds will be in the same order of magnitude as in previous years (a few thousand birds annually on a national level). The number of release sites and the density of released birds per site are unknown. Increasing the number and density of birds would also increase the probability of negative effects and the severity of the consequences. VKM assessed the impacts of released common pheasants and grey partridges on competition, predation, hybridization, transmission of disease, herbivory and indirect impacts through interactions with other species (predator abundance and pathogen-mediated competition). VKM also assessed the impact on biodiversity in a 50-year perspective. Furthermore, VKM discusses how the birds’ welfare might be impacted by rearing, transport, release and exposure to pointing dogs. Finally, VKM provides a list of relevant diseases and assessed their potential impact on animal health during transport, rearing and release. Results and conclusions VKMs assessment show that there are several risks to biodiversity, animal health, and animal welfare from the release of captive bred common pheasants and grey partridges in Norway. The risk of increased competition for food, particularly in winter, with birds with similar niches as common pheasants and grey partridges, is low on a national scale and moderat on a local scale. This is particularly so for yellowhammer, Emberiza citronella, a species categorized as vulnerable on the national red list due to its progressive population decline caused by reduced availability of food during winter. There is a moderate risk for predation on invertebrates and negative impacts on flora. Indirectly, activities connected to the release of birds may lead to moderate risks of altered predator abundance and disease-mediated competition. VKM concludes that the ecological impacts will be more severe for redlisted species present within the release areas for common pheasants and grey partridges. Repeated release of common pheasants and grey partridges can lead to high risk of disease transmission to wild birds. .............