Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Red clover (Trifolium pratense L.) is the most important forage legume in the Nordic region, but its utilization is limited by poor persistency. The improvement of cultivated red clover can potentially take advantage of the numerous wild populations and landraces conserved in gene banks; however, there is often limited information available on the phenotypic and genetic characteristics of this material. We characterized 48 populations conserved at NordGen for a number of traits and compared them to commercial cultivars. The material was evaluated in field trials at four locations over two years and in an experiment under controlled conditions. Considerable variation was identified, with stem length, growth type and flowering date having the highest broad sense heritabilities. Traits related to plant size were strongly associated with late flowering and upright growth and differed between landraces/cultivars on the one hand and wild populations on the other. There was a large genotype by environment interaction on winter survival, which only partially correlated with freezing tolerance under controlled conditions. A majority of gene bank accessions exceeded the commercial cultivars in winter survival and freezing tolerance and can therefore be a genetic resource for future improvement of these traits. The phenotypic variation among accessions was associated with two main axes of climatic variation at the collection site. Petiole length of young plants under controlled conditions as well as plant size in the field increased with increasing summer temperature and decreasing summer precipitation, while number of leaves and an apparent vernalization requirement, recorded under controlled conditions, increased with decreasing annual and winter temperature. We discuss the implications these results have for collection, conservation and utilization of red clover genetic resources in the Nordic region.

Til dokument

Sammendrag

In the Arctic part of the Nordic region, cultivated crops need to specifically adapt to adverse and extreme climate conditions, such as low temperatures, long days, and a short growing season. Under the projected climate change scenarios, higher temperatures and an earlier spring thaw will gradually allow the cultivation of plants that could not be previously cultivated there. For millennia, Pea (Pisum sativum L.) has been a major cultivated protein plant in Nordic countries but is currently limited to the southern parts of the region. However, response and adaptation to the Arctic day length/light spectrum and temperatures are essential for the productivity of the pea germplasm and need to be better understood. This study investigated these factors and identified suitable pea genetic resources for future cultivation and breeding in the Arctic region. Fifty gene bank accessions of peas with a Nordic landrace or cultivar origin were evaluated in 2-year field trials at four Nordic locations in Denmark, Finland, Sweden, and Norway (55° to 69° N). The contrasting environmental conditions of the trial sites revealed differences in expression of phenological, morphological, crop productivity, and quality traits in the accessions. The data showed that light conditions related to a very long photoperiod partly compensated for the lack of accumulated temperature in the far north. A critical factor for cultivation in the Arctic is the use of cultivars with rapid flowering and maturation times combined with early sowing. At the most extreme site (69°N), no accession reached full maturation. Nonetheless several accessions, predominantly landraces of a northern origin, reached a green harvest state. All the cultivars reached full maturation at the sub-Arctic latitude in northern Sweden (63°N) when plants were established early in the season. Seed yield correlated positively with seed number and aboveground biomass, but negatively with flowering time. A high yield potential and protein concentration of dry seed were found in many garden types of pea, confirming their breeding potential for yield. Overall, the results indicated that pea genetic resources are available for breeding or immediate cultivation, thus aiding in the northward expansion of pea cultivation. Predicted climate changes would support this expansion.

Til dokument

Sammendrag

Oomycetes are spore-forming eukaryotic microbes responsible for infections in animal and plant species worldwide, posing a threat to natural ecosystems, biodiversity and food security. Genomics and transcriptomics approaches, together with host interaction studies, give promising results towards better understanding of the infection mechanisms in oomycetes and their general biology. Significant development and progress in oomycetes genomic studies have been achieved over the past decades but further understanding of molecular processes, gene regulations and infection mechanisms are still needed. The use of molecular tools such as CRISPR/Cas and RNAi helped elucidate some of the molecular processes involved in host invasion and infection both in plant and animal pathogenic oomycetes. These methods provide an opportunity for accurate and detailed functional analysis involving various fields of studies such as genomics, epigenomics, proteomics, and interactomics. Functional gene characterisation is essential for filling the knowledge gaps in dynamic biological processes. However, every method has both advantages and limitations that should be considered before choosing the best method for investigating a particular research question. Here we review transformation systems, gene silencing and gene editing techniques in oomycetes, how they function, in which species and what are their main advantages and disadvantages.

Til dokument

Sammendrag

Background Equatorward, rear-edge tree populations are natural monitors to estimate species vulnerability to climate change. According to biogeographical theory, exposition to drought events increases with increasing aridity towards the equator and the growth of southern tree populations will be more vulnerable to drought than in central populations. However, the ecological and biogeographical margins can mismatch due to the impact of ecological factors (topography, soils) or tree-species acclimation that can blur large-scale geographical imprints in trees responses to drought making northern populations more drought limited. Methods We tested these ideas in six tree species, three angiosperms (Fagus sylvatica, Quercus robur, Quercus petraea) and three gymnosperms (Abies alba, Pinus sylvestris and Pinus uncinata) by comparing rear-edge tree populations subjected to different degrees of aridity. We used dendrochronology to compare the radial-growth patterns of these species in northern, intermediate, and southern tree populations at the continental rear edge. Results and conclusions We found marked variations in growth variability between species with coherent patterns of stronger drought signals in the tree-ring series of the southern populations of F. sylvatica, P. sylvestris, and A. alba. This was also observed in species from cool-wet sites (P. uncinata and Q. robur), despite their limited responsiveness to drought. However, in the case of Q. petraea the intermediate population showed the strongest relationship to drought. For drought-sensitive species as F. sylvatica and P. sylvestris, southern populations presented more variable growth which was enhanced by cool-wet conditions from late spring to summer. We found a trend of enhanced vulnerability to drought in these two species. The response of tree growth to drought has a marked biogeographical component characterized by increased drought sensitivity in southern populations even within the species distribution rear edge. Nevertheless, the relationship between tree growth and drought varied between species suggesting that biogeographical and ecological limits do not always overlap as in the case of Q. petraea. In widespread species showing enhanced vulnerability to drought, as F. sylvatica and P. sylvestris, increased vulnerability to climate warming in their rear edges is forecasted. Therefore, we encourage the monitoring and conservation of such marginal tree populations.