Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Olfaction is the most important sensory mechanism by which many insects interact with their environment and a wind tunnel is an excellent tool to study insect chemical ecology. Insects can locate point sources in a three-dimensional environment through the sensory interaction and sophisticated behavior. The quantification of this behavior is a key element in the development of new tools for pest control and decision support. A wind tunnel with a suitable flight section with laminar air flow, visual cues for in-flight feedback and a variety of options for the application of odors can be used to measure complex behaviour which subsequently may allow the identification of attractive or repellent odors, insect flight characteristics, visual-odor interactions and interactions between attractants and odors lingering as background odors in the environment. A wind tunnel holds the advantage of studying the odor mediated behavioural repertoire of an insect in a laboratory setting. Behavioural measures in a controlled setting provide the link between the insect physiology and field application. A wind tunnel must be a flexible tool and should easily support the changes to setup and hardware to fit different research questions. The major disadvantage to the wind tunnel setup described here, is the clean odor background which necessitates special attention when developing a synthetic volatile blend for field application.

Til dokument

Sammendrag

Carbonic anhydrase (CA) plays an important physiological role in all biological systems by accelerating the interconversion of CO2 and HCO3 −. In algae, CA is essential for photosynthesis: external CA (CAext) dehydrates HCO3 −, enhancing the supply of CO2 to the cell surface, and internal CA (CAint) interconverts HCO3 − and CO2 to maintain the inorganic carbon (Ci) pool and supply CO2 to RuBisCO. We frst conducted a literature review comparing the conditions in which CA extraction and measurement have been carried out, using the commonly used Wilbur–Anderson method. We found that the assay has been widely modifed since its introduction in 1948, mostly without being optimized for the species tested. Based on the review, an optimized protocol for measuring CA in Macrocystis pyrifera was developed, which showed that the assay conditions can strongly afect CA activity. Tris–HCl bufer gave the highest levels of CA activity, but phosphate bufer reduced activity signifcantly. Bufers containing polyvinylpyrrolidone (PVP) and dithiothreitol (DTT) stabilized CA. Using the optimized assay, CAext and CAint activities were readily measured in Macrocystis with higher precision compared to the non-optimized method. The CAint activity was 2×higher than CAext, which is attributed to the Ci uptake mechanisms of Macrocystis. This study suggests that the CA assay needs to be optimized for each species prior to experimental work to obtain both accurate and precise results.

Til dokument

Sammendrag

Different forage grass models are used to simulate forage yield and nutritive attributes, but these models are seldom compared, particularly those for timothy (Phleum pratense L.), a widely grown forage grass species in agricultural regions with a cold temperate climate. We compared the models BASGRA, CATIMO and STICS for their predictions of timothy crude protein (CP) concentration, neutral detergent fibre (NDF) concentration and NDF digestibility (dNDF), three important forage nutritive attributes. Data on CP and NDF concentrations, and dNDF and the associated weather and soil data for seven cultivars, taken from eight field experiments in Canada, Finland, Norway, and Sweden, were divided into calibration and validation datasets. Model parameters were estimated for each cultivar separately (cultivar-specific calibration) and for all cultivars together (generic calibration), using different methods for the three models. Normalized root mean square error (RMSE) in prediction of CP concentration varied between 16 and 26% for BASGRA, 45 and 101% for CATIMO and 23 and 40% for STICS across the two calibration methods and the calibration and validation datasets. Normalised RMSE in prediction of NDF concentration varied between 8 and 13% for BASGRA, 14 and 21% for CATIMO and 8 and 12% for STICS, while for dNDF it varied between 7 and 22% for BASGRA, 7 and 38% for CATIMO and 5 and 6% for STICS. Cultivar-specific calibration improved the performance of CATIMO and STICS, but not BASGRA, compared with generic calibration. The prediction accuracy for NDF concentration and dNDF with the three models was within the same range or better than that for forage dry matter (DM) yield of timothy. Overall, the three models performed well in predicting some nutritive attributes and yield in Northern Europe and Canada, but improvements are required, particularly to increase the prediction accuracy of CP concentration.

Til dokument

Sammendrag

Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H.fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H.fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H.fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.

Til dokument

Sammendrag

Species of Leptographium are characterized by mononematous or synnematous conidiophores and are commonly associated with different arthropods. Some of them also produce a sexual state characterised by globose ascomata with elongated necks. Compared to investigations on coniferous trees, the occurrence of Leptographium species on hardwood trees has been poorly studied in Europe. During a survey of ophiostomatoid fungi on various hardwood tree species in Norway and Poland, three unusual species, which fit in the broader morphological description of Leptographium spp., were found in association with Trypodendron domesticum, Trypodendron signatum and Dryocoetes alni, and from wounds on a variety of hardwoods. Phylogenetic analyses of sequence data for six different loci (ITS1–5.8 S–ITS2, ITS2-LSU, ACT, b-tubulin, CAL, and TEF-1a) showed that these Leptographium species are phylogenetically closely related to the species of the Grosmannia olivacea complex. The first species forms a well-supported lineage that includes Ophiostoma brevicolle, while the two other new taxa resided in a separate lineage; possibly affiliated with Grosmannia francke-grosmanniae. All the new species produce perithecia with necks terminating in ostiolar hyphae and orange-section shaped ascospores with cucullate, gelatinous sheaths. These species also produce dark olivaceous mononematous asexual states in culture. In addition, two of the newly described species have a second type of conidiophore with a short and non-pigmented stipe. The new Leptographium species can be easily distinguished from each other by their appearance and growth in culture. Based on novel morphological characters and distinct DNA sequences, these fungi were recognised as new taxa for which the names Leptographium tardum sp. nov., Leptographium vulnerum sp. nov., and Leptographium flavum sp. nov. are provided.

Til dokument

Sammendrag

Projected climate change scenarios such as frequently occurring dry summer spells are an enormous threat to the health of boreal conifer forests. We identified visible features indicating wood with tracheids predisposed for hydraulic and mechanical dysfunction in Norway spruce, suggest why this is formed during severe summer drought and hypothesised on mechanism that would cause tracheid collapse and stem cracks. Trees from southern Sweden that showed signs of severe reaction to drought, i.e. stem cracks along the trunk, were compared to healthy, undamaged trees. Rings investigated included those formed in 2006, a year with an extremely dry summer season in the study region. In southern Norway, we investigated trees with and without drought-induced top dieback symptoms. We analysed anatomical features such as tracheid lumen diameter, thickness of cell wall and its various layers (S1, S2 and S3), applied Raman imaging in order to get information on the lignin distribution in the cell wall and the compound middle lamellae and performed hydraulic flow and shrinkage experiments. Although tracheids in annual rings with signs of collapse had higher tangential lumen diameters than those in “normal” annual rings, we conclude that collapse of tracheid walls depends mainly on wall thickness, which is genetically determined to a large extent. Spruce trees that produce earlywood with extremely thin cell walls can develop wall collapse and internal cracks under the impact of dry spells. We also present a new diagnostic tool for detecting individuals that are prone to cell wall collapse and stem cracks: Lucid bands, i.e. bands in the fresh sapwood with very thin cell walls and inhomogeneous lignin distribution in the S-layers and the compound middle lamellae that lost their hydraulic function due to periods of severe summer drought. The detection of genotypes with lucid bands could be useful for an early selection against individuals that are prone to stem cracks under the impact of severe summer drought, and also for early downgrading of logs prone to cracking during industrial kiln drying

Til dokument

Sammendrag

Horizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from time series. The values of the time series are considered as the nodes of the network and are linked to each other if there is no larger value between them, such as they can “see” each other. The network properties reflect the nonlinear dynamics of the time series. For some classes of stochastic processes and for periodic time series, analytical results can be obtained for network-derived quantities such as the degree distribution, the local clustering coefficient distribution, the mean path length, and others. HVGs have the potential to discern between deterministic-chaotic and correlated-stochastic time series. Here, we investigate the sensitivity of the HVG methodology to properties and pre-processing of real-world data, i.e., time series length, the presence of ties, and deseasonalization, using a set of around 150 runoff time series from managed rivers at daily resolution from Brazil with an average length of 65 years. We show that an application of HVGs on real-world time series requires a careful consideration of data pre-processing steps and analysis methodology before robust results and interpretations can be obtained. For example, one recent analysis of the degree distribution of runoff records reported pronounced sub-exponential “long-tailed” behavior of North American rivers, whereas another study of South American rivers showed hyper-exponential “short-tailed” behavior resembling correlated noise.We demonstrate, using the dataset of Brazilian rivers, that these apparently contradictory results can be reconciled by minor differences in data-preprocessing (here: small differences in subtracting the seasonal cycle). Hence, data-preprocessing that is conventional in hydrology (“deseasonalization”) changes long-term correlations and the overall runoff dynamics substantially, and we present empirical consequences and extensive simulations to investigate these issues from a HVG methodological perspective. After carefully accounting for these methodological aspects, the HVG analysis reveals that the river runoff dataset shows indeed complex behavior that appears to stem from a superposition of short-term correlated noise and “long-tailed behaviour,” i.e., highly connected nodes. Moreover, the construction of a dam along a river tends to increase short-term correlations in runoff series. In summary, the present study illustrates the (often substantial) effects of methodological and data-preprocessing choices for the interpretation of river runoff dynamics in the HVG framework and its general applicability for real-world time series.