Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Greenkeepers are looking for alternatives to fungicides for control of turfgrass diseases. Our objective was to evaluate a petroleum- derived spray oil with a blue-green pigment for control of Microdochium patch/pink snow mold (Microdochium nivale) on golf course putting greens with various durations of snow cover. The spray oil was applied at rates 27 or 54 L ha–1 every third week from late August or September to December, either alone, in tank mixture with potassium phosphite (3 kg PO3 ha–1) or in tank mixture with half rate of fungicides approved for turf, in five 1-yr trials in the Nordic countries. The oil was as effective or more effective than fungicides and gave, on average, 94 and 98% disease control at rates 27 and 54 L ha–1, respectively. Tank mixtures with half rate of prochloraz + propioconazole and fludioxonil did not increase disease suppression in a trial with 79 d snow cover. Phosphite reduced disease severity in one trial only and did not improve disease control or turfgrass quality when tank-mixed with the oil. The pigment in the spray oil was highly persistent and improved turfgrass greenness except in a trial where the combination of oil and ice cover gave a transitory black color at ice melt. Another trial with long snow cover showed a drop in turfgrass quality in spring as the spray oil prevented normal green-up. In conclusion, this research shows that a spray oil has the potential to reduce fungicide use on Nordic golf courses.

Til dokument

Sammendrag

Heavy metal contamination of crop lands surrounding mines in North Vietnam is a major environmental issue for both farmers and the population as a whole. Technology for the production of biochar at a village and household level has been successfully introduced into Vietnamese villages. This study was undertaken to determine if rice straw biochar produced in simple drum ovens could remediate contaminated land. Tests were also carried out to determine if biochar and apatite mixed together could be more effective than biochar alone. Incubation trials were carried out over 90 days in pots to determine the total changes in exchangeable Cd, Pb and Zn. Detailed tests were carried out to determine the mechanisms that bound the heavy metals to the biochar. It was found that biochar at 5% (BC5) and the mixture of biochar and apatite at 3% (BCA3) resulted in the greatest reduction of exchangeable forms of Cd, Pb and Zn. The increase in soil pH caused by adding biochar and apatite created more negative charge on the soil surface that promoted Pb, Zn and Cd adsorption. Heavy metals were mainly bound in the organic, Fe/Mn and carbonate fractions of the biochar and the mixture of biochar and apatite by either ion exchange, adsorption, dissolution/precipitation and through substitution of cations in large organic molecules.