Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Abstract
Vegetation optical properties have a direct impact on canopy absorption and scattering and are thus needed for modeling surface fluxes. Although plant functional type (PFT) classification varies between different land surface models (LSMs), their optical properties must be specified. The aim of this study is to revisit the “time-invariant optical properties table” of the Simple Biosphere (SiB) model (later referred to as the “SiB table”) presented 30 years ago by Dorman and Sellers (1989), which has since been adopted by many LSMs. This revisit was needed as many of the data underlying the SiB table were not formally reviewed or published or were based on older papers or on personal communications (i.e., the validity of the optical property source data cannot be inspected due to missing data sources, outdated citation practices, and varied estimation methods). As many of today's LSMs (e.g., the Community Land Model (CLM), the Jena Scheme of Atmosphere Biosphere Coupling in Hamburg (JSBACH), and the Joint UK Land Environment Simulator (JULES)) either rely on the optical properties of the SiB table or lack references altogether for those they do employ, there is a clear need to assess (and confirm or correct) the appropriateness of those being used in today's LSMs. Here, we use various spectral databases to synthesize and harmonize the key optical property information of PFT classification shared by many leading LSMs. For forests, such classifications typically differentiate PFTs by broad geo-climatic zones (i.e., tropical, boreal, temperate) and phenology (i.e., deciduous vs. evergreen). For short-statured vegetation, such classifications typically differentiate between crops, grasses, and photosynthetic pathway. Using the PFT classification of the CLM (version 5) as an example, we found the optical properties of the visible band (VIS; 400–700 nm) to fall within the range of measured values. However, in the near-infrared and shortwave infrared bands (NIR and SWIR; e.g., 701–2500 nm, referred to as “NIR”) notable differences between CLM default and measured values were observed, thus suggesting that NIR optical properties are in need of an update. For example, for conifer PFTs, the measured mean needle single scattering albedo (SSA, i.e., the sum of reflectance and transmittance) estimates in NIR were 62 % and 78 % larger than the CLM default parameters, and for PFTs with flat leaves, the measured mean leaf SSA values in NIR were 20 %, 14 %, and 19 % larger than the CLM defaults. We also found that while the CLM5 PFT-dependent leaf angle values were sufficient for forested PFTs and grasses, for crop PFTs the default parameterization appeared too vertically oriented, thus warranting an update. In addition, we propose using separate bark reflectance values for conifer and deciduous PFTs and demonstrate how shoot-level clumping correction can be incorporated into LSMs to mitigate violations of turbid media assumption and Beer's law caused by the nonrandomness of finite-sized foliage elements.
Abstract
Utilisable crude protein (uCP), methane (CH4) production and other fermentation parameters were analysed in vitro for a diet in which grass silage was replaced by different levels of seaweed protein fractions prepared from three seaweed species: Saccharina latissima, Alaria esculenta and Palmaria palmata. Ten fractions from these three species in which the protein content had been increased and the salt content reduced by simple processing were tested, with inclusion levels in the diet based on the nitrogen content of the fractions. Following an extraction procedure, four fractions from Saccharina latissima, three from Alaria esculenta and one from Palmaria palmata, were gradually included in the diet by replacing high quality silage with approximately 0, 0.15, 0.30 and 0.45 g/g DM, while two high-protein fractions of Palmaria palmata were tested at replacement levels of 0, 0.075, 0.15 and 0.225 g/g DM. To estimate fermentation parameters, 500 mg of each diet were incubated in bottles with 60 mL buffered rumen fluid. Estimated uCP increased linearly with increasing replacement rate of grass silage with seaweed protein fractions (from 158 g/kg DM to 206 g/kg DM on average for all fractions). Increasing protein fraction from the brown seaweed Saccharina latissima in the diet significantly increased true organic matter digestibility (OMD) (from on average 0.786 to 0.821). Organic matter digestibility decreased with increasing level of Alaria esculenta fractions (from on average 0.785 to 0.733), which also gave a linear decrease in CH4 production (from on average 45.3 to 38.5 mL/g organic matter). As a result of decreased CH4 production and OMD, total volatile fatty acid concentration decreased with increasing level of Alaria esculenta fractions (from on average 69.5 to 63.0 mmol/L). Thus, positive and species-specific effects of seaweed on estimated uCP and fermentation parameters were observed in vitro when protein fractions remaining after an extraction procedure on seaweed partly replaced grass silage in the feed ration.
Abstract
High tunnels offer an intensive and protective production system for many fruit crops. In May 2014, two tractor-accessible Haygrove® multibay tunnel systems were installed on a 10% slope at the experimental farm at Nibio Ullensvang, western Norway (60°19’8.03”N, 6°39’14.31”E). Feathered 1-year old European plum cultivar ‘Opal’ on rootstock ‘St. Julien A’ were planted with two rows per bay at a spacing of 1.5×4 m during 2012. Trees were trained to a central leader as free spindles. In 2016, one tunnel was covered (150 μm clear classic polyethylene film) from before blooming until harvest and one tunnel only covered from mid-July till harvest. Different crop loads levels were established by blossom thinning (each flower 5, 10, and 15 cm apart), and fruitlet thinning (each fruitlet 5, 10, and 15 cm apart) at 10-12 mm fruitlet diameter at the end of June. Treatments were applied on single whole trees in a randomized complete block design with five replications. Climatic parameters were monitored inside and outside the tunnels from mid-June to mid-September. Fruit set, yield data, and fruit quality parameters for each treatment were recorded. Increased thinning distances reduced the fruit set and was highest when thinned at fruitlets. Thinning to 5 cm apart and covered the whole season and 10 cm apart covered one month gave the highest fruit sets of 17.9 and 14.3%, respectively. The yield was positively correlated with the fruit set response, 11.7 kg tree-1 (20 t ha-1) – 5 cm between fruitlets and short-covering versus 3.4 kg – 15 cm distance between flowers and long covering. Both blossom and fruitlet thinned trees when covered got a significant yield reduction compared to covered one month. Thinning at the fruitlet stage resulted in smaller fruits at the same crop level (41.3 g on average) compared to flower thinning for both covering periods (47.2 g). Qualitative traits of ’Opal’ plums (bright yellow ground colour, red over colour, and soluble solid contents) were weakly correlated with the fruit set and was high (16.7% average soluble solids content). The coverage from bloom to harvest time promoted maturity of the plums. From the preliminary results, it can be concluded that fruitlets thinning from uncovered trees and one month covering before harvesting gave the largest crop of premium fruits.
Abstract
A novel method for age-independent site index estimation is demonstrated using repeated single-tree airborne laser scanning (ALS) data. A spruce-dominated study area of 114 km2 in southern Norway was covered by single-tree ALS twice, i.e. in 2008 and 2014. We identified top height trees wall-to-wall, and for each of them we derived based on the two heights and the 6-year period length. We reconstructed past, annual height growth in a field campaign on 31 sample trees, and this showed good correspondence with ALS based heights. We found a considerable increase in site index, i.e. about 5 m in the H40 system, from the old site index values. This increase corresponded to a productivity increase of 62%. This increase appeared to mainly represent a real temporal trend caused by changing growing conditions. In addition, the increase could partly result from underestimation in old site index values. The method has the advantages of not requiring tree-age data, of representing current growing conditions, and as well that it is a cost-effective method with wall-towall coverage. In slow-growing forests and short time periods, the method is least reliable due to possible systematic differences in canopy penetration between repeated ALS scans.
Authors
Bjørn ØklandAbstract
The populations sizes of Ips typographus in Norway have been monitored since the last big outbreak period in the 1970s. By now the monitoring programme includes about 500 pheromone-baited trap records for each of the last 40 years. Normally, Ips typographus has been the only species of major concern in northern bark beetle outbreaks, and trapping records have served as a warning when the over-wintering population sizes are large. In contrast to Central Europe, the regional trend in northwest is that rainy weather tend to slow down the bark beetle populations in many years, whereas stormfelling episodes of spruces, snowbreaks and warm and dry seasons in certain years favour Ips typographus and other bark beetle species. Recent observations indicate that other less aggressive bark beetle species may play a more important role during severe drought periods that follow rainful seasons with low production of Ips typographus. It is likely that an increased frequency of extreme weather events may have unexpected effects on what bark beetles become abundant during the course of the outbreaks. Furthermore, the warm years seem to be especially favourable for the Ips typographus at the northernmost latitudes. In addition, a new bark beetle species for Scandinavia, Ips amitinus, is expanding its range and may become a participant in future bark beetle outbreaks in this region.
Abstract
Mediterranean climate areas are home to highly relevant and distinctive agro-ecosystems, where sustainability is threatened by water scarcity and continuous loss of soil organic carbon. In these systems, recycling strategies to close the loop between crop production (and agrorelated industries) and soil conservation are of special interest in the current context of climate change mitigation. Pyrolysis represents a recycling option for the production of energy and biochar, a carbonaceous product with a wide range of environmental and agronomic applications. Considering that biochar functionality depends on both the original biomass and the pyrolysis conditions, we produced and characterized 22 biochars in order to evaluate their potential to sequester C and modify soil physicochemical properties. The pore size distribution was a function of the original biomass and did not change with the temperature of pyrolysis. The highest number of pores within the size 0.2−30 μm, relevant for plant available water retention, was reached at 600 °C. However, ideal pyrolysis conditions to optimize C stability and hydrologic properties was reached at 400 °C in woody derived biochars, as higher temperatures lead to a nontransient hydrophobicity. This study highlights relevant physicochemical properties of locally derived biochars that can be used to tackle specific challenges in Mediterranean agroecosystems.
Abstract
In many areas where spring is wet, fungicides are applied in relation to rain events that trigger ejection of ascospores of Venturia inaequalis, which cause primary infections of apple scab. Past studies established the rate of ejection during rain in relation to light and temperature, and determined the wetting time required for infection. Simulation software uses this information to calculate risk and help time sprays accordingly. However, the distribution of the infection time required by a population of spores landed on leaves was never studied, and assumptions were used. To estimate this, we inoculated ascospores of V. inaequalis on potted trees at different temperatures for specific wetting times. Lesions were enumerated after incubation. Lesions increased with wetness time and leveled off once the slowest spores infected the host, closely matching the monomolecular model. Wetness hours were best adjusted for temperature using the Yin equation. The minimum infection time on the youngest leaves was about 5 h, matching results from previous studies, whereas half the lesions appeared after 7 h of infection. Infection times for leaves with ontogenic resistance were longer. Our results improve current software estimates and may improve spraying decisions.
Abstract
This article describes the first implementation of green treatment technology for wastewater from agritourism facilities in Romania. The general concept was based on the principles of a nature-based treatment system (NBTS) developed, tested and successfully operated in cold climate in Norway. Two NBTSs, each constituting a three-element system equipped with a septic tank, a pre-treatment section and a filter/wetland bed, were constructed and set in full operation in Mara and Vadu Izei villages (Maramures County, Northern Romania, Carpathian Mountains). Both systems revealed sufficient adaptation to wastewater treatment during the first year of operation. The highest removal rates of BOD5, CODCr, Ntot and Ptot reached 93–97%, 94–98%, 97–98% and 98–99%, respectively. In addition, these parameters did not exceed their permitted values in effluents discharged to water bodies. Both systems demonstrate integrated measures of ecological engineering implemented as “treatment gardens” perfectly suited to the tourist facilities, rural surroundings and cultural landscape of the region.
Abstract
Norway has a political goal to minimize the loss of cultural heritage due to removal, destruction or decay. On behalf of the national Directorate for Cultural Heritage, we have developed methods to monitor Cultural Heritage Environments. The complementary set of methods includes (1) landscape mapping through interpretation of aerial photographs, including field control of the map data, (2) qualitative and quantitative initial and repeat landscape photography, (3) field recording of cultural heritage objects including preparatory analysis of public statistical data, and (4) recording of stakeholder attitudes, perceptions and opinions. We applied these methods for the first time to the historical clustered farm settlement of Havrå in Hordaland County, West Norway. The methods are documented in a handbook and can be applied as a toolbox, where different monitoring methods or frequency of repeat recording may be selected, dependent on local situations, e.g., on the landscape character of the area in focus.
Authors
Eric Post Eva Beyen Pernille Sporon Bøving R. Conor Higgins Christian John Jeff Kerby Christian Pedersen David A. WattsAbstract
We report an observation of a flightless fledgling Lapland longspur (Calcarius lapponicus (Linnaeus, 1758)) at a long-term study site near Kangerlussuaq, Greenland, in late July 2018. Based on our observations of longspur nests at the site dating back to 1993, we estimate that the fledgling observed in 2018 may have originated from a nest initiated 12–37 d later than nesting in previous years. Onset of spring in 2018 was late, but comparable with other years in which longspur nests were observed a full calendar month earlier than in 2018. An analysis including multiple candidate predictor variables revealed a strong negative association between estimated longspur nest initiation dates and mean May temperature, as well as a weaker association with the length of the annual period of vegetation green up at the site. Given the limitations of our data, however, we are unable to assign causality to the 2018 observation, and cannot rule out other possibilities, such as that it may have resulted from a second clutch.