Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Forfattere
Mette ThomsenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Given the compound differences between tris(2-butoxyethyl)- and tris(2-cloroethyl) phosphate (TBOEP and TCEP, respectively), we hypothesized that exposure of juvenile salmon to TBOEP and TCEP will produce compound-specific differences in uptake and bioaccumulation patterns, resulting in potential formation of OHmetabolites. Juvenile salmon were exposed to waterborne TCEP or TBOEP (0.04, 0.2 and 1 mg/L) for 7 days. The muscle accumulation was measured and bioconcentration factor (BCF) was calculated, showing that TCEP was less accumulative and resistant to metabolism in salmon than TBOEP. Metabolite formations were only detected in TBOEP-exposed fish, showing seven phase I biotransformation metabolites with hydroxylation, ether cleavage or combination of both reactions as important metabolic pathways. In vitro incubation of trout S9 liver fraction with TBOEP was performed showing that the generated metabolite patterns were similar to those found in muscle tissue exposed in vivo. However, another OH-TBOEP isomer and an unidentified metabolite not present in in vivo exposure were observed with the trout S9 incubation. Overall, some of the observed metabolic products were similar to those in a previous in vitro report using human liver microsomes and some metabolites were identified for the first time in the present study. Toxicological analysis indicated that TBOEP produced less effect, although it was taken up faster and accumulated more in fish muscle than TCEP. TCEP produced more severe toxicological responses in multiple fish organs. However, liver biotransformation responses did not parallel the metabolite formation observed in TBOEP-exposed fish.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Athanasios Markou George D. ManolisSammendrag
Det er ikke registrert sammendrag
Forfattere
Ingeborg Callesen Nicholas Clarke Andis Lazdinš Iveta Varnagiryte-Kabasinskiene Karsten Raulund-RasmussenSammendrag
The long-term carrying capacity for biomass production is highly dependent on available soil resources. A soil test method for potential nutrient release capability was applied to 23 Nordic and Baltic forest soil profiles. The soils had coarse (10), medium (12) and fine (1) soil texture and most were podsolising. Extraction with dilute (0.1 M, 1:50 sample:solution ratio) nitric acid for 2 h was followed by 48 h and 168 h of extraction in soil samples from pedogenetic horizons. Dilute nitric acid solution was replaced after each step and release of mineral nutrient elements in solution was determined. C-horizon nutrient release (µmol g−1 fine earth, 0–218 h) was negatively correlated with mean annual temperature (MAT 0.5–8.5 °C) and for potassium (K) also mean annual precipitation (MAP 523–1440 mm y−1) suggesting a gradient in the mineralogy of the parent material that sediment transports during Pleistocene glaciations have not distorted. In B-horizons of sandy parent materials with felsic mineralogy cumulative nutrient release was positively correlated with pH and with Al and Fe release suggesting accumulation and stabilisation of nutrients in pedogenic products. E-horizons had less nutrient release capability than C-horizons, indicating a more weathered state of E-horizon parent material. Soil formation due to mineral dissolution and leaching of base cations and the gradient in parent material origin and weathering state both affected the observed pattern of nutrient release. On soils with very low mineral P resources (e.g. < 250 kg P ha−1 to 50 cm) by repeated dilute acid extraction, harvest of nutrient rich biomass will not be sustainable. However, it can’t be concluded that sites with high P availability by 0.1 M HNO3 can support an intensive harvest without compensation of P (and Ca) by fertilisation. Due to buffering of removed base cations in B-horizons, nutrient export with biomass may not be traceable as pH decline at decadal time scale. Therefore, the direct measurement of nutrient stocks by the extraction procedure (or other similar assessment of nutrient reserves by strong acid) is suggested as indicative for the mineral weathering capability of forest soils to recover from P and base cation depletion by biomass harvest.
Forfattere
Nenad Potocic Ivan Seletkovic Mladen Ognjenovic Tamara Jakovljevic Melita Percec Tadic Volkmar TimmermannSammendrag
Det er ikke registrert sammendrag
Forfattere
Tatsiana EspevigSammendrag
Det er ikke registrert sammendrag
Forfattere
Tatsiana EspevigSammendrag
Det er ikke registrert sammendrag
Forfattere
Tatsiana EspevigSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag