Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Forfattere
Aline Roma Tomaz Ademir de Oliveira Ferreira Rattan Lal Telmo Jorge Carneiro Amado Belchior Oliveira Trigueiro da Silva William Ramos da Silva Felipe José Cury Fracetto Thiago M. Inagaki Maria Betânia Galvão Santos Freire Elves Obede dos Santos NunesSammendrag
Land-use change has driven soil carbon stock losses in ecosystems worldwide. Implementing agricultural crops and exploiting forest resources trigger the breakdown of soil aggregates, thus exposing organic matter to microbial decomposition and enhancing carbon dioxide emissions, especially in biomes more susceptible to climate extremes as in the tropical semiarid regions. This study was based on the hypothesis that the undisturbed soil from the dry forest (Caatinga biome under natural revegetation in Brazilian semiarid) would have an improvement in the mass of macroaggregates and recover more than 50% of the soil C stock within 10 years. Thus, a field experiment was conducted to investigate soils from the Caatinga biome under native vegetation, “cowpea cropping” for over 30 years, and soil under natural revegetation for over 10 years, after conventional soil cultivation of maize and cowpea, to determine soil and soil-aggregates carbon stocks and to estimate the recovery rate of these stocks. The proportional mass of aggregates of different sizes and the total stock of particulate organic carbon (POC) were also quantified. The results showed that soil under preserved native vegetation of dry forest Caatinga biome had higher total soil C stock (50.9 Mg ha−1) than that under cowpea cropping (23.2 Mg ha−1) and natural revegetation (45.1 Mg ha−1). The proportional mass of large macroaggregates was higher in soil under native vegetation for all depths. However, soil under cowpea cropping had lower C stocks in macroaggregates, and recovered roughly 63% of the original C stocks, while revegetation recovered 78% of the stock in 10 years. Although the conventional management system for cowpea monoculture aggravated losses in soil carbon stock by more than 50% of the original C stocks, dry forest under natural revegetation recovered 79% of this stock and almost 100% of POC stock in 10 years (~12 Mg ha−1). Furthermore, soil under undisturbed Caatinga dry forest achieved C stock levels equivalent to that of the global average range for semiarid tropical environments. The high recovery rate of C stock in forest soil under natural revegetation indicates the resilience potential of organisms responsible for structural protection of aggregates and the encapsulated soil organic matter content.
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Thiago M. InagakiSammendrag
Det er ikke registrert sammendrag
Forfattere
Ademir de Oliveira Ferreira João Carlos de Moraes Sá Rattan Lal Gabriel Barth Thiago M. Inagaki Daniel Ruiz Potma Gonçalves Clever Briedis Aline Roma Tomaz William Ramos da SilvaSammendrag
Land management systems that comprise the principles of conservation agriculture (CA) can lead to soil organic carbon (SOC) gains over time. Nonetheless, how fertilization regimes interfere with their performance in highly weathered soils is still uncertain. This study presents results on SOC storage, crop yield, and soil resilience from a long-term experiment in southern Brazil (Ponta Grossa – Paraná State) 26 years after its establishment in 1989 combining a gradient of soil disturbance through diverse soil management strategies with contrasting fertilization regimes. We hypothesized that preserving soil structure rebuilt over time through no-till system plays a significant role in SOC persistence and the fertilization regime can impact land management performance on soil resilience and crop yield. The experimental design was laid out as a split plot through completely randomized blocks. The main plots comprised the treatments related to soil management systems: 1) conventional plow-based tillage – CT; 2) minimum tillage (Chiselling replacing plowing) – MT; 3) no-till with one chisel plowing every three years – NTch; and 4) continuous no-till system – NTS. The sub-plots comprised full crop fertilization (FCF) for all crops and low crop fertilization (LCF) by suppressing K and P fertilization and maintaining N in broadcast application. SOC stocks significantly improved as the soil disturbance diminished, resulting in higher soil resilience indexes for NTS and NTch. Differences in SOC stocks between the contrasting treatments NTS and CT were higher under low fertilization, resulting in C and N sequestration rates of 1.14 and 0.14 Mg ha−1 year−1 under LCF compared to 0.77 and 0.08 Mg ha−1 yr−1 in FCF at the 0–100 cm layer. Such higher differences were induced by overall higher SOC stocks of CT when under FCF and higher SOC stocks in subsoil depths promoted by NTS when under LCF. High fertilization treatments produced cumulative yields 1.5 times higher for soybeans and 2.5 times higher for corn throughout the 26 years of the experiment. Labile C fractions extracted by hot water (HWEOC) and K-permanganate (POXC) were systematically increased as the disturbance diminished. Gains in labile fractions were promoted in deeper layers in lower disturbance treatments (NTch and NTS). We conclude that combining conservation agriculture principles ultimately defined the potential for SOC sequestration. The high soil resilience under the NTS in this research indicates a considerable potential to reverse the soil degradation and decline of the SOC and labile fractions by conversion to intensive NTS (high and diversified annual C input) associated with absence of soil disturbance.
Forfattere
Palingamoorthy Gnanamoorthy Junbin Zhao Abhishek Chakraborty Pramit Kumar Deb Burman Yaoliang Chen Linjie Jiao Jing Zhang Yaqi Liu Sigamani Sivaraj Yiping Zhang Qinghai SongSammendrag
Det er ikke registrert sammendrag
Forfattere
Lång Kristiina Daniël van de Craats Henri Honkanen Lars Elsgaard Rudi Hessel Hanna Kekkonen Tuula Larmola Jens Leifeld Poul Erik Lærke Andres Rodriguez Sanna Saarnio Junbin ZhaoSammendrag
Det er ikke registrert sammendrag