Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Forfattere
Junbin Zhao Mikhail Mastepanov Carla Stadler Cornelya Klutsch Erling Fjelldal David Kniha Runar KjærSammendrag
Det er ikke registrert sammendrag
Forfattere
Thomas Georges A Bawin Grzegorz Konert Corine Alexis Faehn Markku Juhani Keinänen Kirsten Krause Inger Martinussen Laura Elina Jaakola Katja Hannele KarppinenSammendrag
The Climate Laboratory in Tromsø offers excellent facilities for controlled growth experiments. In an attempt to provide for future needs to perform qualitative and quantitative analysis of plant growth and plant traits at the laboratory scale, UiT and NIBIO have jointly implemented state-of-the-art monitoring and imaging systems as part of the strategic project ABSORB (https://site.uit.no/absorb/). Here, we present a 3D multi- and 2D hyper-spectral imaging platform, augmented with thermal analysis capabilities, tailored for plant phenotyping in both research and teaching contexts. The 3D imaging component of the PlantEye F600 laser scanner provides effortless and accurate non-invasive assessments of plant architecture and growth dynamics. Three complementary 2D hyperspectral cameras deliver more detailed spectral information across a 400-1700 nm range of wavelengths, supporting in-depth analysis of biochemical composition and stress responses at the macro- and micro-scales. We showcase the platform's versatility through two compelling experiments investigating drought-stress and light-inhibition, respectively. In the drought-stress experiment, we observed plant responses to water scarcity, tracking physiological changes and morphological adaptations with our integrated imaging system. In the light-inhibition experiment, we further explored the impact of light intensity on plant growth and development. We envision collaborative efforts to address the current challenges in plant biology, agriculture, and environmental science.
Forfattere
Mingkai Jiang Belinda E. Medlyn David Wårlind Jürgen Knauer Katrin Fleischer Daniel S. Goll Stefan Olin Xiaojuan Yang Lin Yu Sönke Zaehle Haicheng Zhang He Lv Kristine Y. Crous Yolima Carrillo Catriona Macdonald Ian Anderson Matthias M. Boer Mark Farrell Andrew Gherlenda Laura Castañeda-Gómez Shun Hasegawa Klaus Jarosch Paul Milham Raúl Ochoa-Hueso Varsha Pathare Johanna Pihlblad Juan Piñeiro Nevado Jeff Powell Sally A. Power Peter Reich Markus Riegler David S. Ellsworth Benjamin SmithSammendrag
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.
Forfattere
Nhat Strøm-AndersenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anastasia Georgantzopoulou Sebastian Kühr Ralf Kaegi Mark Rehkämper Ralph A. Sperling Karl Andreas Jensen Ana Catarina Almeida Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Forfattere
Anastasia Georgantzopoulou Sebastian Kühr Ralph Kaegi Mark Rehkämper Ralph A. Sperling Karl Andreas Jensen Ana Catarina Almeida Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Forfattere
Tomasz Leszek WoznickiSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Heathlands are extensive systems often dominated by slow-growing and long-lived woody plants. These systems require longer-term studies to capture if and how they are changing over time. In 2020, we resurveyed species richness and cover of vascular plant communities in 139 heathlands along the coastline of northern Fennoscandia, first surveyed during 1965–1975. The first survey included six heathland types, each with dominance – a cover of 25% or more – of the dwarf shrubs Calluna vulgaris, Kalmia procumbens, Betula nana, Vaccinium myrtillus and Empetrum nigrum. The two latter heathland types made up 29% and 48%, respectively, of all heathlands. In addition to the dominant dwarf shrubs giving their names to the heathland types, a few other species qualified as dominant. In the resurvey, all the heathland types had E. nigrum as the single dominant species, except for the heathland formerly dominated by B. nana. Most other species had low cover both at the time of the original survey and the resurvey. Also, the heathland types were species poor at the time of the original survey, with an average of eight vascular plant species per 4 m2 and were found equally species poor in the resurvey. Species richness differed between heathland types only at the time of the original survey, and the ratio of species exchange between the two surveys was negatively related to the original cover of E. nigrum. Here we provide a half-century perspective on vegetation change, during which several heathland types in northern Fennoscandia have changed to Empetrum heathlands, reducing the diversity of heathland types across the Boreal to Arctic landscape. As a native plant, E. nigrum cannot be considered invasive, but its allelopathic capacity has likely already modified these heathland ecosystems and will continue to do so, reducing ecosystem multifunctionality across the region.