Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2013

Til dokument

Sammendrag

The relative volume growth effects of thinning after whole-tree harvesting (WTH) compared to a conventional stem-only harvest (CH) in young stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) were analyzed, using a series of four pine and four spruce field experiments. The series was established in the years 1972–1977, and thinning was performed only once. Results are shown periodically and cumulatively. All sites were included for 20 (19) years in pine and 25 years in spruce. The total experimental period varied between 19 and 35 years for individual sites. Four models assuming additive or multiplicative effects gave only slightly varying results. The inclusion of standing volume after thinning as a covariate was effective in spruce independent of whether the covariate was treated as multiplicative or additive. A logarithmic model with a multiplicative effect of the covariate was preferred in further presentations. Results for pine stands after 20 years indicated a nonsignificant loss of 5% with confidence limits (p = 0.05) of ±6–7%, while the spruce stands showed a significant growth loss of 11% with confidence limits of ±4–5% after 25 years. The difference between the species in relative growth effects was significant, and amounted to 8% for a cumulative 20-year period. No indications of trends in response were found during a 20-year period in pine and a 25-year period in spruce. An analysis of growth effects in the first years showed that basal area increment in spruce was significantly reduced already in the first growing season after thinning.

Til dokument

Sammendrag

Vårt klima er under endring, og granas mistrivsel enkelte steder er et tydelig tegn. Bjørk kan mange plasser være et svært aktuelt treslag som erstatning for gran, fordi vi finner bjørk over hele landet, omløpstiden er kort, produksjonen er stor på høye boniteter, og sluttproduktet har stor verdi. Bjørk er et både nyttig og vakkert materiale som har stått og fortsatt står menneskene nær.

Sammendrag

Nondetection of trees is a serious problem for the use of terrestrial laser scanning (TLS) in forest inventory applications. The use of multiple coregistered scans can reduce nondetection but may not eliminate it, and it carries substantial field and post-processing costs. We examined and extended previously developed theoretical approaches to modeling nondetection. The results suggested that tree size as well as multiple stand structural characteristics may be factors, but the theoretical models do not lend themselves to empirical estimation. We then used distance sampling techniques to identify detection probabilities and develop adjusted estimates for trees per hectare and basal area in nine forest stands in southern Norway. The results compared favorably with field estimates based on fixed-area plots. The estimated detection probabilities indicate that correction for nondetection is needed unless the search for trees is limited to very small distances from the scanner. Distance sampling appears promising when TLS is used in the context of temporary-plot forest inventories.

Til dokument

Sammendrag

Terrestrial lidar (TLS) is an emerging technology for deriving forest attributes, including conventional inventory and canopy characterizations. However, little is known about the influence of scanner specifications on derived forest parameters. We compared two TLS systems at two sites in British Columbia. Common scanning benchmarks and identical algorithms were used to obtain estimates of tree diameter, position, and canopy characteristics. Visualization of range images and point clouds showed clear differences, even though both scanners were relatively high-resolution instruments. These translated into quantifiable differences in impulse penetration, characterization of stems and crowns far from the scan location, and gap fraction. Differences between scanners in estimates of effective plant area index were greater than differences between sites. Both scanners provided a detailed digital model of forest structure, and gross structural characterizations (including crown dimensions and position) were relatively robust; but comparison of canopy density metrics may require consideration of scanner attributes.