Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

The effects of genetically modified (GM) maize (Zea mays L.) expressing the Bacillus thuringiensis Berliner Cry1Fa2 protein (Bt) and phosphinothricin or glyphosate herbicide tolerance on soil chemistry (organic matter, N, P, K and pH), compared with non-GM controls, were assessed in field and pot experiments. In the field experiment, NH4+ was significantly higher in soil under the crop modified for herbicide tolerance compared to the control (mean values of 11 and 9.6 mg N/kg respectively) while P was significantly higher in soil under the control compared to under the GM crop (mean values of 6.9 and 6.4 dg P/kg, respectively). No significant differences were found as a result of growing Bt/herbicide tolerant maize. In the pot experiment, using soils from three sites (Gongzhuling, Dehui and Huadian), significant effects of using Bt maize instead of conventional maize were found for all three soils. In the Gongzhuling soil, P was significantly higher in soil under the control compared to under the GM crop (mean values of 4.8 and 4.0 dg P/kg, respectively). For the Dehui soil, the pH was significantly higher in soil under the control compared to under the GM crop (mean values for {H+} of 1.1 and 2.4 μM for the control and the GM crop respectively). In the Huadian soil, organic matter and total N were both higher in soil under the GM crop than under the control. For organic matter, the mean values were 3.0 and 2.9% for the GM crop and the control, respectively, while for total nitrogen the mean values were 2.02 and 1.96‰ for the GM crop and the control respectively. Our results indicate that growing GM crops instead of conventional crops may alter soil chemistry, but not greatly, and that effects will vary with both the specific genetic modification and the soil.

Til dokument

Sammendrag

In Scandinavia, high losses of soil and particulate-bound phosphorus (PP) have been shown to occur from tine-cultivated and mouldboard-ploughed soils in clay soil areas, especially in relatively warm, wet winters. Omitting primary tillage (not ploughing)in autumn and continuous crop cover are generally used to control soil erosion. In Norway, ploughing and shallow cultivation of sloping fields in spring instead of ploughing in autumn has been shown to reduce particle transport by up to 89% on soils with high erodibility. Particle erosion from clay soils can be reduced by 79% by direct drilling in spring compared with autumn ploughing. Hence, field experiments in Scandinavia on ploughless tillage of clay loams and clay soils compared with conventional ploughing in autumn usually show reductions in total P losses of 10-80%, via both surface runoff and subsurface runoff (lateral movements to drains). However, the effects of not ploughing during autumn on losses of dissolved reactive P (DRP) are frequently negative, since the proportion of DRP losses without ploughing compared conventional ploughing has increased up to fourfold in field experiment. In a comprehensive Norwegian field experiment at a site with high erosion risk the proportion of DRP compared to total P has increased twice in water after direct drilling compared to ploughing before winter wheat. Therefore erosion control measures should be further evaluated for fields with a low erosion risk since reduction in PP losses may be low and DRP losses still high. Ploughless tillage systems have potential side-effects, including an increased need for pesticides to control weeds (e.g. Elytrigia repens (L.) Desv. ex Nevski) and plant diseases (e.g. Fusarium spp.) harboured by crop residues on the soil surface. Overall, soil tillage systems should be appraised for their positive and negative environmental effects before they are widely used for all conditions of soil, management practices, climate and landscape.