Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2016
Abstract
In this paper, we estimate the cost-effectiveness of tillage methods as a measure to reduce phosphorus loss. The study was based on real-world information on costs. Data on phosphorus loss for different soil tillage methods were modelled. The cost-effectiveness of various soil tillage methods were related to autumn ploughing. The results showed large variation in cost-effectiveness related to erosion risk. Furthermore, spring harrowing was the most cost-effective method to reduce phosphorus loss, followed by autumn harrowing and spring ploughing in spring cereals. Implementation of changed tillage methods showed lower costs for spring cereals compared to winter wheat. The differences in costs between areas were most evident for spring tillage due to differences in yields and agronomic management. Cost-effectiveness is an important criterion in selecting mitigation methods, but due to large variations in the effect of changed tillage, these should be locally adapted to the high risk areas of erosion.
Abstract
The effects of soil variability on regional crop yield under projected climate change are largely unknown. In Southeastern Norway, increased temperature and precipitation are projected for the mid-21st century. Crop simulation models in combination with scaling techniques can be used to determine the regional pattern of crop yield. In the present paper, the CSM-CROPSIM-CERES-Wheat model was applied to simulate regional spring wheat yield for Akershus and Østfold counties in Southeastern Norway. Prior to the simulations, parameters in the CSM-CROPSIM-CERES-Wheat model were calibrated for the spring wheat cvars Zebra, Demonstrant and Bjarne, using cultivar trial data from Southeastern Norway and site-specific weather and soil information.Weather input data for regional yield simulations represented the climate in 1961–1990 and projections of the climate in 2046–2065. The latter were based on four Global Climate Models and greenhouse gas emission scenario A1B in the IPCC 4th Assessment Report. Data on regional soil particle size distribution, water-holding characteristics and organic matter data were obtained from a database. To determine the simulated grain yield sensitivity to soil input, the number of soil profiles used to describe the soilscape in the region varied from 76 to 16, 5 and 1. The soils in the different descriptions were selected by arranging them into groups according to similarities in physical characteristics and taking the soil in each group occupying the largest area in the region to represent other soils in that group. The simulated grain yields were higher under all four projected future climate scenarios than the corresponding average yields in the baseline conditions. On average across the region, there were mostly non-significant differences in grain yield between the soil extrapolations for all cultivars and climate projections. However, for sub-regions grain yield varied by up to 20% between soil extrapolations. These results indicate how projected climate change could affect spring wheat yield given the assumed simulated conditions for a region with similar climate and soil conditions to many other cereal production regions in Northern Europe. The results also provide useful information about how soil input data could be handled in regional crop yield determinations under these conditions.
Authors
Mai Van Trinh Mehreteab Tesfai Andrew Borrell Sekhar Udaya Nagothu Thi Phuong Loan Bui Vu Duong Quynh Le Quoc ThanhAbstract
Det er ikke registrert sammendrag
Abstract
Bangladesh often suffers from droughts and floods that cause substantial harm to households and communities. The frequency of such events is expected to increase with climate change. Assessing the vulnerability to climate change is a promising evaluation tool that can assist in identifying and improving adaptation strategies at various geographical scales. In this paper, we examine the vulnerability status of two regions in Bangladesh, one in the north, which is frequently impacted by severe droughts, and one in the south, which is exposed to regular flooding, high water, and salinity. We evaluate the exposure, sensitivity and adaptive capacity of each region using demographic, agro-economic, infrastructural, and biophysical indicators. We consider information obtained in a literature review, interviews with local experts, household surveys, and field visits in the study areas. We use principal components analysis to assess vulnerability to climate change between and within the north and south regions. The flood-prone, saline region in the south appears less vulnerable to climate change the northern drought prone areas, although further validation is needed.
Abstract
Det er ikke registrert sammendrag
Authors
Johanna Gottschamel Andreas G. Lössl Stephanie Ruf Yanliang Wang Morten Skaugen Ralph Bock Jihong Liu ClarkeAbstract
Abstract Dengue fever is a disease in many parts of the tropics and subtropics and about half the world’s popula- tion is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Cur- rently there is only one vaccine (DengvaxiaÒ) available (limited to a few countries) on the market since 2015 after half a century’s intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibod- ies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype- specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion con- struct combining EDIII polypeptides from all four ser- otypes was also attempted. Transplastomic EDIII- expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a GatewayÒ plastid transformation vector for inducible transgene expression.
Authors
Zhibo Hamborg YeonKyeong Lee Astrid Sivertsen Gry Skjeseth Sissel Haugslien Jihong Liu Clarke Qiao-Chun Wang Dag-Ragnar BlystadAbstract
-
Abstract
Det er ikke registrert sammendrag
Abstract
Medieval Trondheim is located on the eastern part of Nidarneset, a small peninsula formed by the river plain at the mouth of the River Nid on the southern shore of Trondheimsfjord. The topographic conditions for medieval Trondheim differ from those of the other Norwegian medieval towns (notably Bergen, Oslo, and Tønsberg), and the protected, historic part of Trondheim contains anthropogenic sediments which lie entirely within an unsaturated environment. A large proportion of these sediments contain wood and other types of organic material. The thickness of the anthropogenic sediments varies greatly from more than 4 m to less than 0.5 m, and they overlie well-drained alluvial sands and gravels. The Directorate for Cultural Heritage (Riksantikvaren) and the Norwegian Institute for Cultural Heritage Research (NIKU) have different roles in the management of cultural heritage sites. However, they cooperate in developing sustainable management and a scientific approach to research, as well as finding practical solutions aimed at securing stable preservation conditions for anthropogenic sediments that are vulnerable and sensitive to environmental changes, both chemical and mechanical. In this paper we present results from environmental investigations conducted in 2007 and 2012 at a location in the central part of medieval Trondheim where an in situ preservation project has been established on the site of new construction work. The project is cross-interdisciplinary, combining archaeological retrieval methods with the sampling and analysis of soil chemical parameters and the monitoring of present basic parameters such as temperature, moisture and redox potential. The monitoring has been ongoing since the beginning of 2013 and will continue until 2017.
Abstract
Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg−1 DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.