Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Forfattere
Paul Eric AspholmSammendrag
De kan bli 280 år gamle, men har stort sett ikke formert seg de siste 30–50 årene. Klimaendringer kan gi massedød av elvemusling over hele Europa.
Forfattere
James Johnson Elisabeth Graf Pannatier Stefano Carnicelli Guia Cecchini Nicholas Clarke Nathalie Cools Karin Hansen Henning Meesenburg Tiina M. Nieminen Gunilla Pihl-Karlsson Hugues Titeux Elena Vanguelova Arne Verstraeten Lars Vesterdal Peter Waldner Mathieu JonardSammendrag
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosys- tems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995–2012. Plots with at least 10 years of observations from the ICP Forests moni- toring network were used. Trends were assessed for the upper mineral soil (10– 20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO 2 4 ) in soil solution; over a 10-year period (2000– 2010), SO 2 4 decreased by 52% at 10–20 cm and 40% at 40–80 cm. Nitrate was unchanged at 10–20 cm but decreased at 40–80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+ + Mg 2+ + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuni- form. At 10–20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pH CaCl 2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pH CaCl 2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitor- ing in evaluating ecosystem response to decreases in deposition.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
The aim of this study was to contribute to the development of pelleted compound recycling fertilizerswith favourable handling and spreading characteristics and balanced nutrient ratios by combiningnitrogen (N)- and phosphorus (P)-rich waste resources (meat bone meal, fish sludge or food waste)with potassium (K)-rich bottom wood ash. Pelleted compound recycling fertilizers with gooddurability and low dusting tendency were produced by roll-pelleting preheated waste resources at asuitable moisture content. However, the nutrient ratios in the final products were insufficientlybalanced, with too low N concentrations relative to P and K to meet crop demands. In a bioassayusing barley ( Hordeum vulgare) and a nutrient-deficient sand/peat mixture, the relative agronomiceffectiveness (RAE) of pelleted compound recycling fertilizers and reference recycling fertilizers was22–42% of that of mineral compound fertilizer. Growth limitation was due to reduced N availability(mineral fertilizer equivalent - MFE = 35–57%) or reduced P availability (MFE = 20–115%), with thegreatest P fertilizer value obtained for digestate based on dairy manure and fish sludge. Availability ofK in bottom wood ash was masked by the experimental soil.
Forfattere
Trond MæhlumSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anastasia Georgantzopoulou Christian Vogelsang Claire Coutris Kuria Ndungu Patricia Almeida Carvalho Andy Booth Kevin V Thomas Ailbhe MackenSammendrag
The majority of nanomaterials (NMs) used in industrial and commercial applications are likely to enter the wastewater stream and reach wastewater treatment plants (WWTPs). In Oslo, Norway, the WWTPs receive both municipal and industrial wastewater. The treated effluents are discharged to aquatic recipients and the stabilised sludges are applied on agricultural land, however, the transformation of the particles and the potential hazard they pose in these compartments are poorly understood. The overall goal of this study was to elucidate the behavior of Ag and TiO2 NPs during biological wastewater treatment, and investigate the subsequent effects of transformed particles present in the effluent and sludge relative to their pristine counterparts. A laboratory-scale wastewater treatment system was established and combined with a battery of ecotoxicological assays and characterization techniques. The system was based on activated sludge treatment with a pre-denitrification system and fed with synthetic wastewater spiked daily with 10 µg Ag NPs/L (PVP coated, 25 nm, nanoComposix) and 100 µg TiO2 NPs/L (5 nm, NM-101, JRC) over a period of 5 weeks. Samples from all reactors, including the effluent, were collected weekly and analyzed by sequential filtration and inductively coupled plasma mass spectrometry (ICP-MS) to determine the NP fractionation and partitioning. Transmission electron microscopy and single particle ICP-MS were performed on selected samples. The effects of transformed particles present in the effluents were assessed using a battery of bioassays including freshwater and marine algae (growth inhibition, reactive oxygen species -ROS- formation), crustaceans and in vitro models of relevance for NP toxicity assessment (RTgill-W1 cell line, metabolic activity, epithelial integrity, ROS formation, gene expression). The effects of the aged particles through biosolids application were evaluated using coelomocytes, primary cells involved in immune defense mechanisms, isolated from the exposed earthworms Eisenia fetida. The observed effects were organism-dependent, with bottom feeding organisms and algae being more sensitive. The in vitro models offered a useful tool for the assessment of environmental samples. Through a relevant exposure scenario, this study adds useful pieces to our still fragmentary understanding of the environmental fate of weathered NPs.