Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Hymenoptera is a hyperdiverse insect order represented by over 153,000 different species. As many hymenopteran species perform various crucial roles for our environments, such as pollination, herbivory, and parasitism, they are of high economic and ecological importance. There are 99 hymenopteran genomes in the NCBI database, yet only five are representative of the paraphyletic suborder Symphyta (sawflies, woodwasps, and horntails), while the rest represent the suborder Apocrita (bees, wasps, and ants). Here, using a combination of 10X Genomics linked-read sequencing, Oxford Nanopore long-read technology, and Illumina short-read data, we assembled the genomes of two willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina): the bud-galling species Euura lappo and the leaf-galling species Eupontania aestiva. The final assembly for E. lappo is 259.85 Mbp in size, with a contig N50 of 209.0 kbp and a BUSCO score of 93.5%. The E. aestiva genome is 222.23 Mbp in size, with a contig N50 of 49.7 kbp and a 90.2% complete BUSCO score. De novo annotation of repetitive elements showed that 27.45% of the genome was composed of repetitive elements in E. lappo and 16.89% in E. aestiva, which is a marked increase compared to previously published hymenopteran genomes. The genomes presented here provide a resource for inferring phylogenetic relationships among basal hymenopterans, comparative studies on host-related genomic adaptation in plant-feeding insects, and research on the mechanisms of plant manipulation by gall-inducing insects.

Til dokument

Sammendrag

While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host–microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a “core” microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler–microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.

Til dokument

Sammendrag

While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.

Til dokument

Sammendrag

Wildlife species living in proximity with humans often suffer from various anthropogenic factors. Here, we focus on the endangered Saimaa ringed seal (Pusa hispida saimensis), which lives in close connection with humans in Lake Saimaa, Finland. This unique endemic population has remained landlocked since the last glacial period, and it currently consists of only ~400 individuals. In this review, we summarize the current knowledge on the Saimaa ringed seal, identify the main risk factors and discuss the efficacy of conservation actions put in place to ensure its long-term survival. The main threats for this rare subspecies are bycatch mortality, habitat destruction and increasingly mild winters. Climate change, together with small population size and an extremely impoverished gene pool, forms a new severe threat. The main conservation actions and priorities for the Saimaa ringed seal are implementation of fishing closures, land-use planning, protected areas, and reduction of pup mortality. Novel innovations, such as provisioning of artificial nest structures, may become increasingly important in the future. Although the Saimaa ringed seal still faces the risk of extinction, the current positive trend in the number of seals shows that endangered wildlife populations can recover even in regions with considerable human inhabitation, when legislative protection is combined with intensive research, engagement of local inhabitants, and innovative conservation actions. Such multifaceted conservation approaches are needed in a world with a growing human population and a rapidly changing climate.

Til dokument

Sammendrag

This study evaluated the effects of bio-based carbon materials on methane production by anaerobic digestion. The results showed that biochar and hydrochar can promote cumulative methane yield by 15% to 29%. However, there was no statistical significance (p > 0.05) between hydrochar and biochar produced at different temperature on methane production. 16S rRNA gene sequencing and bioinformatics analysis showed that biochar and hydrochar enriched microorganism that might participate in direct interspecies electron transfer (DIET) such as Pseudomonadaceae, Bacillaceae, and Clostridiaceae. The the surface properties of the modified biochar were characterized with BET, Raman, FTIR and XPS. Bio-based carbon materials with uniform dispersion provided a stable environment for the DIET of microorganisms and electrons are transferred through aromatic functional groups on the surface of materials. This study reveals bio-based carbon materials surface properties on methane production in anaerobic digestion and provides a new approach to recycling spent coffee grounds.

Til dokument

Sammendrag

Syngas from pyrolysis/gasification process is a mixture of CO, CO2 and H2, which could be converted to CH4, so called syngas biomethanation. Its development is obstructed due to the low productivity and CO inhibition. The aim of this study was to demonstrate the feasibility of using syngas as the only carbon source containing high CO concentration (40%) for biomethanation. Lab-scale thermophilic bioreactor inoculated with anaerobic sludge was operated continuously for over 900 h and the shift of microbial structure were investigated. Results showed that thermophilic condition was suitable for syngas biomethanation and the microbes could adapt to high CO concentration. Higher processing capacity of 12.6 m3/m3/d was found and volumetric methane yield of 2.97 m3/m3/d was observed. These findings could strengthen the theoretical basis of syngas biomethanation and support its industrialization in the future.

Til dokument

Sammendrag

With the development of the world economy and society, the living standards of residents have been improved, along with a large amount of food waste and carbon dioxide (CO2) emissions. In the face of global warming and energy shortages, food waste can be used as high-value bio-energy raw materials which is also an effective way to reduce CO2 emissions. Therefore, this paper proposes a novel anaerobic digestion and CO2 emissions efficiency analysis based on a Slacks-Based Measure integrating Data Envelopment Analysis (SBM-DEA) model to evaluate and optimize the process structure of anaerobic treatment of food waste. The total feed volume and the discharge volume of liquid digestate are taken as inputs, and the total methane (CH4) production volume is taken as the desirable output and CO2 emissions are regarded as the undesirable output to build the biogas production and CO2 emissions evaluation model during the anaerobic digestion process. Finally, the proposed method is used in the actual anaerobic digestion process. The results show that the overall efficiency values in January, April, May, and June in 2020 are higher than those in other months. At the same time, due to the optimal allocation of slack variables of inputs and undesirable outputs, the efficiency values of other inefficient anaerobic digestion days can be improved.

Til dokument

Sammendrag

Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011–2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was −718 ± 128 g C m−2 as a sink in the pre-disturbance years (2011–2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%–93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.