Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

The notion of the Anthropocene does not fit well into the frame of scientific disciplines. The proposed onset of a new geological epoch has become closely linked with human history and with notions such as purposeful human actions. Purposefulness, however, is also subject to interpretation in the humanities and does not fit into analytical methods in Earth sciences. Scholars have taken up this challenge and engage with Earth scientists in public discourse on the Anthropocene. Due to the lack of a common frame of reference, discussions suffer from incompatible abstractions, notions, methods and results. Here, we propose an abstract model-framework facilitating communication between Earth scientists and scholars. In Earth sciences, models are often employed to provide a representation of an independent reality which imposes limits to growth. In the humanities, self-reference and reflexivity of modernity at all scales including the globe becomes a key issue. In the former view models can be decomposed and locally tested, in the latter models and concepts involving human action need to be considered in all their contextual and semantic relations. Typically, such concepts, for example in anthropology, do not come in a mathematical language. Nevertheless, we suggest that a common reference can be sought in an abstract model language, rather than in realistic models. Category theory and formal notions developed in computer science may provide such an abstract framework to accommodate the apparently incompatible views of models and concepts, which are considered as successful by their respective home disciplines. Diverse models such as examples from game theory (economics), from dynamic system theory (Earth science) and from a classification of ethnocosmologies (anthropology) can be formulated as different instances within a joint and abstract framework. Such a framework allows to investigate implications of the Anthropocene for logical similarities with past environmental events by seeking historical analogies (for example with the great oxygenation event) or formulating consistency requirements for the future (for example by defining sustainability). The prize for the common basis is a strict ‘epistemic hygiene’, avoiding most ontological assumptions and criticisms which often appear as dear to Earth scientists and scholars, but which may prevent a more fruitful exchange on an urgent interdisciplinary topic

Til dokument

Sammendrag

The Integrated Carbon Observation System (ICOS) research infrastructure is aimed at quantifying and understanding the greenhouse gas balance of Europe and neighboring regions. ICOS-Norway brings together the leading Norwegian institutes for greenhouse gas observations in the three Earth system domains atmosphere, ocean, and terrestrial ecosystems, providing world-leading competence, which is integrated into one jointly funded and operated infrastructure. This provides Norway with a state-of-the-art research infrastructure embedded in European and global efforts. Even though each Earth system domain was part of dedicated research infrastructures prior to the establishment of ICOS-Norway, the greenhouse gas community in Norway was divided and there was minimal collaboration across the Earth system domains. The overall goal of ICOS-Norway is to provide accurate and accessible data on, as well as integrated assessments of, the Norwegian carbon balance at regional scale, across the land, ocean, and atmosphere. ICOS-Norway has thus led to an increased impact of environmental observing systems in Norway and surrounding seas, easily seen through the number of publications and new proposals generated as collaborative efforts. This poster presents the ICOS-Norway infrastructure, including plans for expansion and long-term funding.

Sammendrag

The role of soil moisture on organic matter decomposition remains poorly understood and underrepresented in coupled global climate models. Traditionally, organic matter decomposition is represented as simple first- or second order kinetics in such models, using mostly empirical functions for temperature and moisture controls, and without considering microbial interactions. We use the Dual Michaelis-Menten (DAMM) model (Davidson et al. 2012) to simulate simultaneous temperature and moisture controls on decomposition rates. Microbial controls on decomposition in relation to changes in soil moisture and temperature are implicitly simulated with DAMM: Soil moisture affects the available substrate (SOC) and oxygen available for decomposition and reduces the maximal, temperature driven decomposition rate (Vmax). We apply the DAMM model on vertically resolved data from the most recent coupled model intercomparison project (CMIP5) and gridded global SOC values (SoilGrids). We study the potential decomposition rates for a historic period (1976 - 2006) and a period under the RCP8.5 climate change scenario (2070-2099) for 5 soil layers up to 1m depth. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates, compared to a temperature-only approach. The majority of these changes are driven by soil moisture through substrate limitation, rather than oxygen diffusion limitation. In deeper soil layers, oxygen diffusion limitation plays a stronger role. Our study highlights the need for inclusion of soil moisture interactions in coupled global climate models. Our findings could be particularly important for boreal soils, which store a major fraction of Earth’s SOC stocks and where temperature increases and soil moisture changes are expected to be largest.