Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Sammendrag

Funn fra PROLAND: Soppmidler og mikroplast i jorda Forskerne i PROLAND-prosjektet har undersøkt hva som skjer når soppmidler enten adsorberes på bionedbrytbar plastfolie som blir pløyd ned i jorda, kontra at de blandes direkte i jorda. Har dette noe å si for nedbrytningen av soppmidlene? Forskerne har fulgt nedbrytningsforløpet til tre soppmidler tillatt i norsk landbruk, og har nå svaret… Vi får også et unikt innblikk i hvordan meitemarken – naturens egen jordbearbeider – påvirkes av mikroplast. Hvor lang tid tar det for eksempel før en mikroplastpartikkel passerer gjennom meitemarkens tarm? Temaet er kanskje lite delikat på selveste valentinsdagen, men passer utmerket for oss som er nysgjerrige på mikroplastens mobilitet i jorda.

Til dokument

Sammendrag

Digestate from the biogas facility of IVAR at Grødaland, Rogaland County was tested for fertilizer effects in the production of turf gras in a pot experiment at NIBIO Særheim. Digestate was applied to the pot soil, with quantities equivalent to 0, 5, 10 and 20 kg N/daa and compared to mineral fertilizers with the same N-quantities. Germination of the gras seeds was not affected by neither digestate nor mineral fertilizers. The biomass production was largest when fertilized with mineral fertilizer, which increased the gras growth also when 5 kg N/daa was applied, with maximal yield reached at 10 kg N/daa. Digestate increased biomass production significantly, with approximately the same biomass increase from levels of 5 to 10 and to 20 kg N/daa. The digestate had a lower nitrogen use efficiency than mineral fertilizers, due to lack of complete mineralization, or delayed mineralization compared to the time of the plant’s needs for N.

Sammendrag

Gjennom god agronomi og god forvaltning av nitrogenressurser forebygges tap av nitrogen. De viktigste tiltakene mot avrenning av nitrogen fra åkerarealer er balansert gjødsling, fangvekster, grasdekke, og ingen jordarbeiding om høsten. Rensetiltak for nitrogen i jordbruksavrenning, for eksempel våtmarker, er ikke tilstrekkelig utprøvd under norske forhold, men kan også være effektive tiltak.

2024

Sammendrag

Parasittmidler er viktige for å ivareta god dyrehelse, men økt resistens gjør at virkningen av midlene avtar. I tillegg er parasittmiddel-rester i dyremøkk skadelig både for insekter som lever av møkk, og for mange former for jordliv. Redusert bruk av parasittmidler og riktig håndtering av gjødsla kan bremse resistensutviklingen og bedre situasjonen for gjødselbiller og jordliv.

Sammendrag

Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. Soils are no exception and concentrations of polyethylene mulch debris up to 380 kg/ha have been reported in Chinese agricultural soils. A variety of biodegradable plastic products have thus been developed and marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not always fulfilled, and the risk that biodegradable plastics could also contribute to plastic pollution must be evaluated. In this presentation, we want to share the knowledge gained through research projects on biodegradable plastics in agricultural soil, where we both studied the degradation of biodegradable mulch under Nordic soil conditions, and the fate of biodegradable plastics in two major soil amendments: compost and biogas digestate. A two-year field experiment with biodegradable mulch (PBAT-starch and PBAT-PLA) buried in soil in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation already after 2 months, but that complete degradation may take 3 to 9 years, depending on soil temperature and soil organic matter content (both correlate positively with degradation rate). Accumulation is therefore likely to happen when biodegradable mulch is repeatedly used every year. A full-scale experiment with compostable plastic cups (PLA) at an industrial composting plant, where we followed their fate and conducted metagenomic analysis over 13 weeks, demonstrated the major role played by fungi for a successful degradation of PLA. However, the successful management of biodegradable plastic products largely depends on existing waste management infrastructure. Most biodegradable plastic bags, labelled as compostable and used for food waste collection do not end up in industrial composting plants in Norway, but in biogas production plants. Here, we showed that these plastic bags (starch-based polymer) are only marginally degraded (maximum 21-33 % mass loss) during biogas production, and likely to end up in biogas digestate and then in agricultural soils, unless digestate is treated to remove plastic residues.

Sammendrag

Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. Soils are no exception and concentrations of polyethylene mulch debris up to 380 kg/ha have been reported in Chinese agricultural soils. A variety of biodegradable plastic products have thus been developed and marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not always fulfilled, and the risk that biodegradable plastics could also contribute to plastic pollution must be evaluated. In this presentation, we want to share the knowledge gained through research projects on biodegradable plastics in agricultural soil, where we both studied the degradation of biodegradable mulch under Nordic soil conditions, and the fate of other biodegradable plastics in soil amendments such as compost and biogas digestate. A two-year field experiment with biodegradable mulch (PBAT-starch and PBAT-PLA) buried in soil in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation already after 2 months, but that complete degradation may take 3 to 9 years, depending on soil temperature and soil organic matter content (both correlate positively with degradation rate). Accumulation is therefore likely to happen when biodegradable mulch is repeatedly used every year. A full-scale experiment with compostable plastic cups (PLA) at an industrial composting plant, where we followed their fate and conducted metagenomic analysis over 13 weeks, demonstrated the major role played by fungi for a successful degradation of PLA. However, the successful management of biodegradable plastic products largely depends on existing waste management infrastructure. Most biodegradable plastic bags, labelled as compostable and used for food waste collection do not end up in industrial composting plants in Norway, but in biogas production plants. Here, we showed that these plastic bags (Mater-Bi®) are only marginally degraded (maximum 21-33 % mass loss) during biogas production, and likely to end up in biogas digestate and then in agricultural soils, unless digestate is treated to remove plastic residues.