Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2012

Sammendrag

I 2007 ble det etablert et 3-årig tiltaksprosjekt for å forbedre vannkvaliteten i vestre Vansjø i Østfold. Nærmere 75 % av jordbruksarealene er omfattet av kontrakter som setter krav til jordarbeiding, fosforgjødsling samt etablering av vegetasjonssoner, fangdammer og sanering av spredt avløp. Siden 2004 er vannkvaliteten i 8 bekker i området overvåket. Resultatene fra bekkeovervåkingen antyder en reduksjon i fosfor, relativt til partikkelkonsentrasjoner i bekkene.

2011

Til dokument

Sammendrag

Abstract Due to difficulties in tracing engineered nanoparticles (ENPs) in complex media, there are few data on the exposure of soil biota to ENPs. This study used neutron activated cobalt (Co NPs) and silver (Ag NPs) nanoparticles, as well as soluble cobalt and silver salts, to assess the uptake, excretion and biodistribution in the earthworm Eisenia fetida. Concentrations of cobalt in worms after four weeks exposure reached 88% and 69% of the Co ions and Co NPs concentrations in food, respectively, while corresponding values for Ag ions and Ag NPs were 2.3% and 0.4%. Both Ag ions and Ag NPs in earthworms were excreted rapidly, while only 32% of the cobalt accumulated from Co ions and Co NPs were excreted within four months. High accumulation of cobalt was found in blood and in the digestive tract. Metal characterization in the exposure medium was assessed by sequential extraction and ultrafiltration. The Co NPs showed significant dissolution and release of ions, while Ag ions and particularly Ag NPs were more inert.

Sammendrag

Due to sewage sludge application on soils, terrestrial ecosystems are very likely to be exposed to silver nanoparticles (AgNPs) and it is thus important to understand the behavior of Ag NPs once in contact with soil components. The aim of this work was to compare the behavior of silver under three forms, silver nitrate, citrate stabilized AgNPs (C-ANPs) and uncoated AgNPs (P-AgNPs), in two soils with contrasting organic matter content, and over time. The physical and chemical properties of the studied soils as well as the nanoparticles size, shape, crystallographic structure and specific surface area were characterized. Soil samples were spiked with silver nitrate, C-AgNPs or P-AgNPs, and let for ageing 2 hours, 2 days, 5 weeks or 10 weeks before they were submitted to sequential extraction. The ionic silver solution and the two AgNPs types were radiolabeled so that we could detect and quantify silver by gamma spectrometry by measuring the 110mAg tracer in the different sequential extraction fractions. We thereby obtained for each silver form, soil type and time point a distribution of silver in the different fractions. Silver was generally more mobile in the mineral soil, although the fractionation patterns were very different for the three silver types in both cases. Over 20% of the total C-AgNPs concentration were water soluble in both soils (<5% for AgNO3 and P-AgNPs) the first two days after spiking, but the fraction decreased to trace levels thereafter. This was compensated by an increase in the reducible fraction. Regarding P-AgNPs, 80% were not extractable at all, but contrary to AgNO3 and C-AgNPs, the water soluble and ion exchangeable fractions did not decrease over time in the mineral soil, and even increased in the organic soil.