Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Sammendrag

Weed suppression was investigated in a field experiment across 31 international sites. The study included 15 plant communities at each site, based on two grasses and two legumes, each sown in monoculture and 11 four-species mixtures varying in the relative proportions of the four species. At each site, one grass and one legume species was selected as fast establishing and the other two species were selected for persistence. Average weed biomass in mixtures over the whole experiment was 52% less (95% confidence interval, 30 to 75%) than in the most suppressive monoculture (transgressive suppression). Transgressive suppression of weed biomass persisted over each year for each mixture. Weed biomass was consistently low and relatively similar across all mixtures and years. Average sown species biomass was greater in all mixtures than in any monoculture. The suppressive effect of sown forage species on weeds in mixtures was achieved without any herbicide use. At each site, weed biomass for almost every mixture was lower than the average across the four monocultures. The average proportion of weed biomass in mixtures was less than in the most suppressive monoculture in two thirds of sites. Mixtures outyielded monocultures, and mixture yield comprised far lower weed biomass.

Til dokument

Sammendrag

Although pasture is low-cost feed, many farmers find it difficult to maintain high milk yield when using pasturefor high-yielding dairy cows in automatically milked herds. Therefore, a seven-week experiment with 40 cows inearly to mid-lactation was performed to evaluate a management model for including pasture in the diet withoutjeopardizing milk production. Within a part-time grazing system with morning and evening outdoor access, wecompared a group with ad libitum grass silage indoors combined with access to a small grass-covered permanentpaddock for exercise and recreation (group EX) with a group offered production pasture at a high allowance percow and day combined with restricted grass silage allowance at night (group PROD). Both groups had the sameoutdoor access times and the same concentrate allowance based on pre-experimental milk yield. Milk yield andmilking frequency were recorded daily in the automatic milking unit. Milk recordings and samplings for de-termination of milk composition took place weekly and outdoor behaviour of cows was recorded during pastureaccess hours on six observation days, evenly distributed over the experimental period. During the experiment,average metabolisable energy concentration was higher in the grass silage offered both groups than in pastureherbage. However, our results showed no significant difference in daily milk yield between treatments.Furthermore, no signifi cant differences between treatments were found in energy-corrected milk, milk fatproduction, or body weight change. Milk protein production was, however, significantly higher in group PROD.In early lactation, no difference in milking frequency was observed between treatments while for cows in mid- tolate lactation, milking frequency was significantly higher in group EX than group PROD. Over the entire ex-periment, group EX cows spent significantly less time outdoors than group PROD. In conclusion, offering highyielding dairy cows in automatic milking systems high-quality pasture at a high allowance for a few hours inmorning and afternoon appears to be an interesting alternative to exercise paddock with full indoor feeding, as itcan reduce costs for supplementary silage, facilitate natural behaviour, and encourage cows to spend more timeoutdoors, while maintaining milk production at a level comparable to that of full indoor feeding.

Til dokument

Sammendrag

During the past few years, several studies have compared the performance of crop simulation models to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have been conducted for grasses. We compared the predictions for timothy grass (Phleum pratense L.) yields for first and second cuts along with the dynamics of above-ground biomass for the grass simulation models BASGRA and CATIMO, and the soil-crop model STICS. The models were calibrated and evaluated using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the calibration methods was small. The results indicate that detailed soil process descriptions improved the overall model performance and the model responses to management, such as nitrogen applications. The results also suggest that taking the genetic variability into account between cultivars of timothy grass also improves the yield estimates. Calibrations using both spring and summer growth data simultaneously revealed that processes determining the growth in these two periods require further attention in model development.

Til dokument

Sammendrag

Different forage grass models are used to simulate forage yield and nutritive attributes, but these models are seldom compared, particularly those for timothy (Phleum pratense L.), a widely grown forage grass species in agricultural regions with a cold temperate climate. We compared the models BASGRA, CATIMO and STICS for their predictions of timothy crude protein (CP) concentration, neutral detergent fibre (NDF) concentration and NDF digestibility (dNDF), three important forage nutritive attributes. Data on CP and NDF concentrations, and dNDF and the associated weather and soil data for seven cultivars, taken from eight field experiments in Canada, Finland, Norway, and Sweden, were divided into calibration and validation datasets. Model parameters were estimated for each cultivar separately (cultivar-specific calibration) and for all cultivars together (generic calibration), using different methods for the three models. Normalized root mean square error (RMSE) in prediction of CP concentration varied between 16 and 26% for BASGRA, 45 and 101% for CATIMO and 23 and 40% for STICS across the two calibration methods and the calibration and validation datasets. Normalised RMSE in prediction of NDF concentration varied between 8 and 13% for BASGRA, 14 and 21% for CATIMO and 8 and 12% for STICS, while for dNDF it varied between 7 and 22% for BASGRA, 7 and 38% for CATIMO and 5 and 6% for STICS. Cultivar-specific calibration improved the performance of CATIMO and STICS, but not BASGRA, compared with generic calibration. The prediction accuracy for NDF concentration and dNDF with the three models was within the same range or better than that for forage dry matter (DM) yield of timothy. Overall, the three models performed well in predicting some nutritive attributes and yield in Northern Europe and Canada, but improvements are required, particularly to increase the prediction accuracy of CP concentration.

Til dokument

Sammendrag

Det er økende interesse hos forbrukere for mjølk og mjølkeprodukt som er produsert uten bruk av kraftfôr med bare beite og konservert gras i fôrrasjonen. Rørosmeieriet AS, som foredler økologisk produsert mjølk, er interessert i å etablere egen produksjonslinje for mjølkeprodukt fra kyr produsert uten kraftfôr. For mjølkeprodusenten kan det å kutte ut kraftfôr i fôrrasjonen få store konsekvenser for mjølkeytelse og dermed økonomi. Formålet med dette arbeidet var å vurdere hva en kan forvente seg av mjølkeytelse og mjølkekvalitet ved å kutte ut kraftfôr i rasjonen. Helse og fruktbarhet hos dyra, næringsstofforsyning til gården og totaløkonomien vil sannsynligvis også påvirkes, og det var et mål å beregne hva mjølkeprodusenten må ha i merpris for mjølka for å opprettholde dekningsbidraget. Arbeidet er gjennomført som en litteraturstudie og som en egen analyse der vi brukte data fra fire økologiske mjølkeproduksjonsbruk i Rørosområdet, som leverer mjølk til Rørosmeieriet. For de fire bruka gjorde vi en scenarioanalyse der vi estimerte mjølkeproduksjon og fôrforbruk uten kraftfôr i beitetida, men med kraftfôr i innefôringstida, og helt uten kraftfôr i rasjonene. Data generert fra scenarioanalysen blei sammenlignet med dagens tilstand med hensyn på mjølkeytelse, næringsstoffbalanse og økonomi. Vi tok også ut mjølkeprøver fra tanken før beiteslipp og i beitetida for å analysere kvaliteten av mjølk..............