Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Sammendrag

I kunstprosjektet Rotvälta rives et stort furutre opp med roten og plasseres opp ned foran fasaden på Oslo S. Gjennom denne dramatiske handlingen blir treet et symbol på vår egen og verdens sårbarhet i dag.

Til dokument

Sammendrag

There is evidence that recently occurring top dieback of Norway spruce (Picea abies (L.) Karsten) tress in southern Norway is associated with drought stress. We compared functional wood traits of 20 healthy looking trees and 20 trees with visual signs of top dieback. SilviScan technology was applied to measure cell dimensions (lumen and cell wall thickness) in a selected set of trunk wood specimens where vulnerability to cavitation (P50) data were available. The wall/lumen ratio ((t/b)²) was a quite good proxy for P50. Cell dimensions were measured on wood cores of all 40 trees; theoretical vulnerability of single annual rings could be thus estimated. Declining trees tended to have lower (t/b)² before and during a period of water deficit (difference between precipitation and potential evapotranspiration) that lasted from 2004 to 2006. The results are discussed with respect to genetic predisposition.

Sammendrag

The present study aims to develop biologically sound and parsimonious site index models for Norway to predict changes in site index (SI) under different climatic conditions. The models are constructed using data from the Norwegian National Forest Inventory and climate data from the Norwegian meteorological institute. Site index was modeled using the potential modifier functional form, with a potential component (POT) depending on site quality classes and two modifier components (MOD): temperature and moisture. Each of these modifiers was based on a portfolio of candidate variables. The best model for spruce-dominated stands included temperature as modifier (R2 = 0.56). In the case of pine- and deciduous-dominated stands, the best models included both modifiers (R2 = 0.40 and 0.54 for temperature and moisture, respectively). We illustrate the use of the models by analyzing the possible shift in SI for year 2100 under one (RCP4.5) of the benchmark scenarios adopted by the Intergovernmental Panel on Climate Change for its fifth assessment report. The models presented can be valuable for evaluating the effect of climate change scenarios in Norwegian forests.

Til dokument

Sammendrag

Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity.