Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

With climate change, the effect of global warming on snow cover is expected to cause range expansion and enhance habitat suitability for species at their northern distribution limits. However, how this depends on landscape topography and sex in size-dimorphic species remains uncertain, and is further complicated for migratory animals following climate-driven seasonal resource fluctuations across vast landscapes. Using 11 years of data from a partially migratory ungulate at their northern distribution ranges, the red deer (Cervus elaphus), we predicted sex-specific summer and winter habitat suitability in diverse landscapes under medium and severe global warming. We found large increases in future winter habitat suitability, resulting in expansion of winter ranges as currently unsuitable habitat became suitable. Even moderate warming decreased snow cover substantially, with no suitability difference between warming scenarios. Winter ranges will hence not expand linearly with warming, even for species at their northern distribution limits. Although less pronounced than in winter, summer ranges also expanded and more so under severe warming. Summer habitat suitability was positively correlated with landscape topography and ranges expanded more for females than males. Our study highlights the complexity of predicting future habitat suitability for conservation and management of size-dimorphic, migratory species under global warming.

Til dokument

Sammendrag

Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-Depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.

Til dokument

Sammendrag

Ongoing global warming is now affecting migratory cycles in a large variety of taxa in seasonally variable environments. Disruption of migratory systems can cause population decline and affect ecosystem function across the globe. It is therefore urgent to understand the drivers of migration and how the different fitness limitations of the sexes affect migration, but studies seldom considered the full annual cycle. We analysed the annual migration cycle of 237 red deer (Cervus elaphus) in Norway and investigate how different seasonal limitations affected the variation in a suite of migration characteristics. We found fundamental differences in migration phenology between seasons, and migratory traits were much more variable in males. Spring migratory movements were characterized by longer distance roamed, lower speed, lasted longer, more frequent use of stopovers, timing was more synchronized and coincided with onset of plant growth, and with higher daily activity levels. Timing of autumn migration was more variable and not closely related to cease of plant growth. Our study emphasizes the benefits of studying the full annual cycle to gain further insight into the migration process, and how understanding the limitations of the full annual migration process of both sexes is critical for conservation purposes.