Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Most horticultural crops are attacked by more than one insect pest. As broad-spectrum chemical control options are becoming increasingly restricted, there is a need to develop novel control methods. Semiochemical attrac- tants are available for three important horticultural pests, strawberry blossom weevil, Anthonomus rubi Herbst (Coleoptera: Curculionidae), European tarnished plant bug, Lygus rugulipennis Poppius (Hemiptera: Miridae) and raspberry beetle, Byturus tomentosus deGeer (Coleoptera: Byturidae). Traps targeting more than one pest species would be more practical and economical for both monitoring and mass trapping than traps for single-species. In this study we aimed to (1) improve the effectiveness of existing traps for insect pests in strawberry and raspberry crops by increasing catches of each species, and (2) test if attractants for two unrelated pest species could be combined to capture both in the same trap without decreasing the total catches. Field tests were carried out in four European countries and different combinations of semiochemicals were compared. A volatile from straw- berry flowers, 1,4 dimethoxybenzene (DMB), increased the attractiveness of the aggregation pheromone to both sexes of A. rubi. The host-plant volatile, phenylacetaldehyde (PAA), increased the attraction of female L. rugu- lipennis to the sex pheromone, and, in strawberry, there was some evidence that adding DMB increased catches further. Traps baited with the aggregation pheromone of A. rubi, DMB, the sex pheromone of L. rugulipennis and PAA attracted both target species to the same trap with no significant difference in catches compared to those single-species traps. In raspberry, catches in traps baited with a combination of A. rubi aggregation pheromone, DMB and the commercially available lure for B. tomentosus, based on raspberry flower volatiles, were similar to those in single-species traps. In both crops the efficiency of the traps still needs improvement, but the multi- species traps are adequate for monitoring and should not lead to confusion for the user as the target species are easy to distinguish from each other.

Til dokument

Sammendrag

Sommeren 2017 ble det samlet 100 bladprøver fra norske jordbærfelt plantet i perioden 2015-2017 med importert plantemateriale, for å lete etter liten jordbærbladlus (Chaetosiphon fragaefolii). Denne bladlusarten er på grunn av sin rolle som virusvektor forbudt å introdusere og spre i Norge. Den er ikke tidligere funnet på jordbær i Norge. Den ble heller ikke funnet i denne undersøkelsen, der til sammen 10 000 blader ble undersøkt.

Til dokument

Sammendrag

We investigated the ability of the fungal entomopathogen Beauveria bassiana strain GHA to endophytically colonize sugarcane (Saccharum officinarum) and its impact on plant growth. We used foliar spray, stem injection, and soil drench inoculation methods. All three inoculation methods resulted in B. bassiana colonizing sugarcane tissues. Extent of fungal colonization differed significantly with inoculation method (χ2 = 20.112, d. f. = 2, p < 0.001), and stem injection showed the highest colonization level followed by foliar spray and root drench. Extent of fungal colonization differed significantly with plant part (χ2 = 33.072, d. f. = 5, p < 0.001); stem injection resulted in B. bassiana colonization of the stem and to some extent leaves; foliar spray resulted in colonization of leaves and to some extent, the stem; and soil drench resulted in colonization of roots and to some extent the stem. Irrespective of inoculation method, B. bassiana colonization was 2.8 times lower at 14–16 d post inoculation (DPI) than at 7–10 DPI (p = 0.020). Spraying leaves and drenching the soil with B. bassiana significantly (p = 0.01) enhanced numbers of sett roots. This study demonstrates for the first time that B. bassiana can endophytically colonize sugarcane plants and enhance the root sett and it provides a starting point for exploring the use of this fungus as an endophyte in management of sugarcane pests.