Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Tillage controls perennial weeds, such as Elymus repens, partly because it fragments their underground storage organs. However, tillage is difficult to combine with a growing crop, which limits its application. The aim of this study was to evaluate how soil vertical cutting with minimum soil disturbance and mowing affect the growth and competitive ability of E. repens in a grass–clover crop. A tractor-drawn prototype with vertical disks was used to fragment E. repens rhizomes with minimal soil and crop disturbance. In experiments performed in 2014 and 2015 at a field site close to Uppsala, Sweden, the rhizomes were fragmented before crop sowing (ERF), during crop growth (LRF), or both (ERFCLRF). Fragmentation was combined with repeated mowing (yes/no) and four companion crop treatments (none, Italian ryegrass, white clover, and grass/clover mixture). The results showed that in the grass–clover crop, rhizome fragmentation reduced E. repens rhizome biomass production and increased Italian ryegrass shoot biomass. ERF and LRF both reduced E. repens rhizome biomass by about 38% compared with the control, while ERFCLRF reduced it by 63%. Italian ryegrass shoot biomass was increased by 78% by ERF, 170% by LRF and 200% by ERFCLRF. Repeated mowing throughout the experiment reduced E. repens rhizome biomass by about 75%. Combining repeated mowing with rhizome fragmentation did not significantly increase the control effect compared to mowing alone. We concluded that rhizome fragmentation using vertical disks can be used both before sowing and during crop growth to enhance the controlling effect of grass–clover crops on E. repens.

Sammendrag

Tripsen heter Thrips setosus, og kommer opprinnelig fra Øst-Asia. Arten ble første gang påvist i Europa i 2014 hos en nederlandsk hortensiaprodusent. Siden har T. setosus spredt seg til flere Europeiske land og USA, og i år ble den funnet i Norge. Denne tripsen holder seg godt skjult på plantene, og kan være vanskelig å oppdage og bekjempe. Påvisningene i Europa har hittil vært knyttet særlig til hortensia, men T. setosus kan også angripe andre prydplanter og grønnsaker som f.eks. tomat, paprika og agurk.

Sammendrag

Thrips setosus er en polyfag trips med opprinnelse i Øst-Asia. Arten ble første gang påvist i Europa i 2014. Da ble tripsen påvist hos en produsent av hortensia i Nederland, og påfølgende undersøkelser konkluderte med at tripsen allerede var etablert i flere områder. De siste årene har T. setosus spredt seg til England, Tyskland, Frankrike og Kroatia. Arten ble satt på EPPO Alert list i 2014, og EPPO anbefaler at det blir satt i verk tiltak for å stanse videre spredning.......

Sammendrag

2 siders handout ifm "Grøna møten: Framtidsspaning för hållbart lantbruk i Norden" arrangert av Agroväst Livsmedel AB (Skara)på Naturbruksskolan Uddetorp, Skara, Sverige, 6. desember 2018

Til dokument

Sammendrag

Vegetables and other row-crops represent a large share of the agricultural production. There is a large variation in crop species, and a limited availability in specialized herbicides. The robot presented here utilizes systematic growing techniques to navigate and operate in the field. By the use of machine vision it separates seeded vegetable crops from weed. Each weed within the row is treated with individual herbicide droplets, without affecting the crop. This results in a significant reduction in herbicide use, and allows for the use of herbicides that would otherwise harm the crop. The robot is tailored to this purpose with cost, maintainability, efficient operation and robustness in mind. The three-wheeled design is unconventional, and the design maintains maneuverability and stability with the benefit of reduced weight, complexity and cost. Indoor pot trials with four weed species demonstrated that the Drop-on-Demand system (DoD) could control the weeds with as little as 7.6 μg glyphosate or 0.15 μg iodosulfuron per plant. The results also highlight the importance of liquid characteristics for droplet stability and leaf retention properties. The common herbicide glyphosate had no effect unless mixed with suitable additives. A field trial with the robot was performed in a carrot field, and all the weeds were effectively controlled with the DoD system applying 5.3 μg of glyphosate per droplet. The robot and DoD system represent a paradigm shift to the environmental impact and health risks of weed control, while providing a valuable tool to the producers.