Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Forfattere
Jinbo Gao Wenjun Zhou Yuntong Liu Liqing Sha Qinghai Song Youxing Lin Guirui Yu Junhui Zhang Xunhua Zheng Yunting Fang John Grace Junbin Zhao Jianchu Xu Heng Gui Fergus Sinclair Yiping ZhangSammendrag
Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was −3.30 kg CH4-C ha−1 y−1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition, which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribution of the forest in mitigating global warming.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Shu Zhang Lingbo Meng Jian Hou Xiaodan Liu Abiola O. Ogundeji Zeyu Cheng Tengjiao Yin Nicholas Clarke Baozhong Hu Shumin LiSammendrag
Det er ikke registrert sammendrag
Forfattere
M. Helbig T. Živković P. Alekseychik M. Aurela T. S. El-Madany E. S. Euskirchen L. B. Flanagan T. J. Griffis P. J. Hanson J. Hattakka C. Helfter T. Hirano E. R. Humphreys G. Kiely R. K. Kolka T. Laurila P. G. Leahy A. Lohila I. Mammarella M. B. Nilsson A. Panov Frans-Jan W. Parmentier M. Peichl J. Rinne D. T. Roman O. Sonnentag E.-S. Tuittila M. Ueyama T. Vesala P. Vestin Simon Weldon P. Weslien S. ZaehleSammendrag
Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
Forfattere
Simon Weldon Bert van der Veen Eva Farkas Nazli Pelin Kocatürk Schumacher Alba Dieguez-Alonso Alice Budai Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Palingamoorthy Gnanamoorthy Qinghai Song Junbin Zhao Yiping Zhang Jing Zhang Youxing Lin Liguo Zhou Sadia Bibi Chenna Sun Hui Yu Wenjun Zhou Liqing Sha Shusen Wang S. Chakraborty Pramit Kumar Deb BurmanSammendrag
The rapid conversion of tropical rainforests into monoculture plantations of rubber (Hevea brasiliensis) in Southeast Asia (SEA) necessitates understanding of rubber tree physiology under local climatic conditions. Frequent fog immersion in the montane regions of SEA may affect the water and carbon budgets of the rubber trees and the plantation ecosystems. We studied the effect of fog on various plant physiological parameters in a mature rubber plantation in southwest China over 3 years. During the study period, an average of 141 fog events occurred every year, and the majority occurred during the dry season, when the temperature was relatively low. In addition to the low temperature, fog events were also associated with low vapor pressure deficit, atmospheric water potential, relative humidity and frequent wet-canopy conditions. We divided the dry season into cool dry (November-February) and hot dry (March-April) seasons and classified days into foggy (FG) and non-foggy (non-FG) days. During the FG days of the cool dry season, the physiological activities of the rubber trees were suppressed where carbon assimilation and evapotranspiration showed reductions of 4% and 15%, respectively, compared to the cool dry non-FG days. Importantly, the unequal declines in carbon assimilation and evapotranspiration led to enhanced crop water productivity (WPc) on cool dry FG days but insignificant WPc values were found between FG and non-FG days of the hot dry season. Our results suggest that, by regulating plant physiology, fog events during the cool dry season significantly reduce water demand and alleviate water stress for the trees through improved WPc.