Organic agriculture

NIBIO contributes with research-based knowledge to the development of organic agriculture. NIBIO expands its knowledge in specific disciplines within the field of agronomy, animal nutrition, and economics, and on a more integrated level, by studying production systems and environmental effects.

WP_20160712_14_56_51_Økologisk-landbruk
Photo: Randi B. Frøseth
Contacts
Employees
Definition of organic agriculture

"Organic Agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic Agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved."

IFOAM 2005

Publications

To document

Abstract

Organic agriculture is acquiring increased attention in Armenia with numerous projects and initiatives prioritizing production of ecologically clean agricultural products. Application of organic fertilizers is one of the key factors supporting sustainable organic production of fruits and vegetables, which requires knowledge of fertilization regimes adapted to crop types for achieving optimum productivity. The present study evaluates the effect of the organic fertilizer “Bioklad” (Bioklad Ltd.) on growth and development of strawberry plantlets. Three concentrations of the organic fertilizer, 1:400, 1:200 and 1:100 dilutions of the concentrate were tested. Plantlets of the cultivar ‘Sonata’ were grown for nine weeks in pots under controlled conditions in a phytotron. Yield, biomass and total phenolic content were not significantly different between Bioklad application treatments. Nevertheless, the Bioklad at the intermediate dilution 1:200 was most optimal for strawberry growth. The analysis of chemical composition of leaves indicated that nitrogen content was higher in plants grown at the lowest dilution (1:100) of Bioklad. In addition, plantlets had the lowest phenolic content at this treatment. Based on the presented results of Bioklad’s effect on strawberry plantlets growth, cost/value insight of this organic fertilizer has been estimated.

Abstract

Most food in developed countries, including organic fruits and vegetables, is sold through supply chains run by large wholesalers and supermarket chains. A certain share is sold through local marketing channels such as speciality stores, food box schemes, farmers' markets, and community-supported agriculture (CSA). This study uses qualitative interviews and a quantitative survey to expose the differences between mainstream and local marketing of organic fruits and vegetables in Norway, why and to what extent farmers selling through these two sales channels are different. We find that the supermarket chains' requirements to provide large quantities of uniform product are burdensome for smaller farmers to match. Farmers supplying the mainstream supermarkets tend to be larger and more rurally located. Farmers selling through local marketing are likely to be smaller, closer to urban areas and more diversified in their production. For local marketing farmers, it is more feasible to produce according to organic principles, using local resources and crop rotation. Survey results also show that local marketing farmers are less motivated to produce fruits and vegetables by income and more motivated to produce organically to achieve better quality and sustainability. At the same time, there are also many similarities between the two groups, and we do not find evidence of a general “conventionalisation” of organic agriculture in Norway.

To document

Abstract

For a 100% organic value chain, we need more varieties suitable for organic cultivation. Varieties bred for organic growing is a challenge in small markets. Many breeding goals are equal for organic and conventional cereals. Hence, accessions failing qualification as commercial varieties may perform well in organic growing. A field experiment over two years was performed at two growing sites to compare 25 accessions of spring wheat, ranging from old heritage varieties to modern breeding lines. We assessed yield and agronomic characteristics, artisan bread baking quality and sensory characteristics. Modern accessions gave best yields. Old varieties had smaller kernels, less grain filling, lower falling numbers and SDS-sedimentation volumes, but higher concentrations of minerals, although the growing site has a strong effect. Bread from modern accessions performed best in a baking test. Several sensory characteristics such as juiciness, chew resistance, firmness, acid taste and vinegar odor varied between varieties. Heritage varieties have an important cultural value, and many consumers are willing to pay a significant premium price for such products. A premium price is required, since yield levels are often considerably lower.

Abstract

Self-sufficiency with feed (SSF) is a basic principle in organic animal production. The current regulations do not impose strict requirements for SSF at farm level, but further restrictions are expected in future. The aim of the present work was to quantify SSF on a range of organic dairy farms in Norway and study farmers’ strategies to produce milk with a high degree of SSF. Nine farms were selected for interview and data collection. On farm level, the proportion of SSF varied between 66 and 99 %. SSF increased to 88-100 % when expressed on national level. Land area is among the limiting factors for famers to reach higher SSF while maintaining the milk production level. A lower proportion of concentrates in the diet seems to have as strong impact on SSF as using own cereals and protein crops as feed, but milk production per total feed production area was highest for the latter. The farmers’ goals and actions are important driving forces to develop more SSF in dairy production systems.

To document

Abstract

To achieve a complete organic value chain, we need organic seed from cultivars adapted to organic growing. A separate breeding for organic growing is difficult to achieve in small markets. Many breeding goals are equal for organic and conventional cereals, and cultivars failing to qualify as a commercial variety for conventional growing may possibly perform well in organic growing, with different regimes of fertilisation and plant protection. A field trial was conducted over 2 years to compare 25 cultivars of spring wheat, ranging from one land race and some old varieties released between 1940 and 1967, to modern market varieties and breeding lines. Grain yield, agronomic characteristics and grain and flour quality, including mineral content, were recorded. The performance of the 20 most interesting cultivars in artisan bread baking was measured, as were sensory attributes in sourdough bread from six cultivars. Modern varieties and breeding lines gave higher yields and had larger kernels, better grain filling, higher falling numbers and higher SDS-sedimentation volumes compared with old cultivars. The old cultivars, on average, had higher concentrations of minerals, although the growing site had a strong effect on mineral concentrations. Bread from modern cultivars performed best in a baking test. Several sensory attributes such as juiciness, chew resistance, firmness, acid taste and vinegar odour varied significantly between the six tested cultivars. Land races and old varieties have an important cultural value, and many consumers are willing to pay a premium price for such products. This will be required since yield levels are often considerably lower, especially with humid weather conditions at harvest.

To document

Abstract

Apples are an important source of bioactive compounds, especially mineral nutrients. Minerals (both macro- and micro-elements) are responsible for the functioning of the human body, and involved in the metabolism and production of carbohydrates, lipids, proteins, vitamins and enzymes. The objective of this study was to determine and compare the content of some minerals (K, P, Ca, Mg and Fe) of two different apple cultivars (‘Red Aroma Orelind’ and ‘Discovery’), both in peel and pulp, grown in organic and integrated production systems in western Norway in 2015. Samples of fruits were prepared by microwave digestion using an Ethos 1 microwave system. All analyses were performed in triplicate on a Thermo Scientific iCAP 6500 Duo ICP. The results showed that potassium was found in the largest quantity in both apple cultivars and in both management systems and average concentration was 944.3 µg g-1 of fresh weight (FW). Calcium was in second place with average of 180.6 µg g-1 FW. Both apple cultivars had largest amounts of both K and P (in peel and flesh) from organic production compared to fruits coming from the integrated production system. The cultivar ‘Red Aroma Orelind’ had a significantly higher level of Fe in organic fruits compared to integrated. The present study showed that the highest values of K/Ca, (K+Mg)/Ca and Mg/Ca were obtained from the cultivar ‘Discovery’ under organic production (both in peel and flesh). Regarding significantly higher concentrations of P, K, Mg, Fe and balanced mineral ratios in organic apples, it can be concluded that those fruits have higher quality, and are at lower risk of bitter pit when stored.

To document

Abstract

There is a need both in organic farming and on farms using integrated pest management for non-chemical measures that control the perennial weed flora. The effect of mechanical weeding and fertilisation on perennial weeds, fungal diseases and soil structure were evaluated in two different experiments in spring cereals. Experiment I included six strategies. The first strategy was (1) without specific measures against perennial weeds. The other strategies encompassed one or two seasonal control measures; (2) rhizome/root cutting with minimal soil disturbance in autumn, (3) hoeing with 24 cm row spacing, (4) combined hoeing and disc harrowing in autumn, (5) ‘KvikUp’ harrowing in spring, and (6) ‘KvikUp’ harrowing in spring and autumn. Experiment II included factor (i) inter-row hoeing and (ii) fertilisation level. This experiment included the comparison between normal row spacing (12 cm) with weed harrowing versus double row spacing (=24 cm) in combination with inter-row hoeing and 4 fertilisation levels (50–200 kg N ha−1). In experiment I the strategies consisting of no or one direct weed control measure (1, 2, 3 and 5) clearly did not control the perennial weeds. The two seasonal control measures (4 and 6) gave a satisfactory weed control and highest crop yield. The combination of best weed control and no measured harmful effects on soil structure or increase of fungal diseases may explain the highest yields for these strategies. In Experiment II, hoeing and 24 cm spacing gave less perennial biomass compared to 12 cm spacing. Grain yields increased linearly with increasing nitrogen input. The study shows that both inter-row hoeing and weed harrows, are important elements in integrated pest management practice and organic farming. In addition, our results indicate that efficient mechanical weeding is possible without harmful effects in crop rotation consisting of various spring cereals as regards soil structure and plant health.

To document

Abstract

Microbes are central drivers of soil processes and in-depth knowledge on how agricultural management practices effects the soil microbiome is essential in the development of sustainable food production systems. Our objective was therefore to explore the long-term effects of organic and conventional cropping systems on soil bacterial and fungal quantity, their community structures and their combined function. To do so, we sampled soil from a long-term experiment in Southeast Norway in 2014, 25 years after the experiment was established, and performed a range of microbial analyses on the samples. The experiment consists of six cropping systems with differences in crop rotations, soil tillage, and with nutrient application regimes covering inorganic fertilizers, cattle slurry (both separately and combined with inorganic fertilizers) and biogas residues from digested household biowaste. The quantity of soil microbes was assessed by extraction of microbial C and N and by analysis of soil DNA (bacterial 16S rRNA, and fungal rRNA internal transcribed spacer region). The structures of the microbial communities were determined and assessment of relatedness of bacterial and fungal communities was done by the unweighted pair group method. Estimates of richness and diversity were based on numbers of unique operational taxonomic units from DNA sequencing and the function of the microbial assembly was measured by means of enzyme assays. Our results showed that production systems including leys had higher microbial biomass and higher numbers of bacterial and fungal gene copies than did systems with cash crops only. A cropping system which appeared to be particularly unfavourable was a reference-system where stubble, roots and exudates were the single source of organic material. Production system significantly affected both bacterial and fungal community structures in the soil. Systems including leys and organic fertilization had higher enzyme activities than did systems with cash crops only. An inclusion of ley in the rotation did not, however, increase either microbial richness or microbial diversity. In fact, the otherwise suboptimal reference-system appeared to have a richness and diversity of both bacteria and fungi at levels similar to those of the other cropping systems, indicating that the microbial function is largely maintained under less favourable agricultural treatments because of the general resilience of soil microorganisms to various stresses. Neither disturbance through tillage nor the use of chemical fertilizer or chemical plant protection measures seemed as such to influence soil microbial communities. Thus, no differences between conventional and organic farming practices as such were found. We conclude that the choice of agricultural management determines the actual microbial community structure, but that biodiversity in general is almost unaffected by cropping system over many years. Adequate addition of organic material is essential to ensure a properly functioning microbial ensemble and, thus, to secure soil structure and fertility over time.

Abstract

The objective of this paper was to examine how cutting frequency, silage fermentation patterns and clover performance in grass-clover swards influence the use of inputs and profitability in an organic dairy system. A linear programming model was developed to compare a three-cut and a two-cut system for a model farm in Central Norway, either with restricted or extensive silage fermentation at low or high red clover (Trifolium pratense L.) proportion in the sward, giving 8 different silage types in all. Input-output relations incorporated into the model were derived from a meta-analysis of organic grassland field trials in Norway as well as a silage fermentation experiment, and with feed intakes and milk yields from simulations with the ‘TINE Optifôr’ feed ration planner in the Norfor feed evaluation system. The model maximized total gross margin of farms with 260,000 l milk quota and housing capacity for 45 cows, with separate model versions for each of the 8 silage types. Farmland availability varied from 30 to 70 ha with 40 ha as the basis. Our results suggested that farmland availability and marginal return of a competing barley crop profoundly influenced the profitability of the different silage types. A high clover proportion increased dry matter (DM) yields and was far more important for profitability than the score on the other factors considered at restricted land availabilities. Profits with the three-cut systems were always greater than those with the two-cut systems, the former being associated with greater silage intakes and improved dairy cow performances but lower DM forage yields. Three-cut systems were further favoured as land availability increased and also by a lower marginal return of barley. Although use of an acidifying silage additive improved feed intakes and milk production per cow, the practice reduced total milk production and depressed profit compared to untreated, extensively fermented silage at restrictive land availabilities. With more land available, and in particular at a low marginal return of barley, use of a silage additive was profitable.

To document See dataset

Abstract

Dairy products are often considered challenging for health due to their saturated fatty acid content, yet they also provide beneficial nutrients, some unique to ruminants. The degree of fat saturation is influenced by cows’ diets; grazing pasture enhances unsaturated fatty acids in milk compared with conserved forages. These benefits can be partially mimicked by feeding oilseeds and here we consider the impact on milk composition in a 2 × 2 trial, feeding rapeseed to both conventional and organic cows, finding very differing lipid metabolism in the 4 experimental groups. For milk fat, benefits of organic rather than conventional management (+39% PUFA, +24% long chain omega-3 and +12% conjugated linoleic acid (CLA)) appear complementary to those from feeding rape (+43% MUFA, +10% PUFA, +40% CLA), combining to produce milk 16% lower SFA and higher in MUFA (43%), PUFA (55%) and CLA (59%). Organic and rape feeding provide less omega-3 PUFA than the conventional and control diets, yet contrary to expectations, together they almost doubled (+94%) the omega-3 concentration in milk, implying a 3.8 fold increase in net transfer from diet into milk. Organic and rape feeding also gave lower trace-elements and antioxidants in milk. Greater understanding of these phenomena might enhance the sustainability of dairying.

To document

Abstract

Minimising outputs of waste and pollution by recycling and efficient utilisation of renewable resources is of common interest for organic agriculture and the concepts of circular and bioeconomy. However, in practice, many efforts to increase recycling of various biological materials in organic agriculture are hampered because standards for certified organic production and processing tend to prefer natural products while avoiding processing and especially chemical processes. This creates several dilemmas and weakens the position of organic agriculture as a spear head in the development of a better resource utilisation which will reduce environmental impacts from food production. Based on practical examples derived from projects aimed at better utilisation of residual materials in various food chains, this paper presents some of these dilemmas. Our aim is to initiate a discussion among organic agriculture stakeholders about the regulations for organic production, how they restrict recycling and a better utilisation of valuable resources, and how this can be overcome.

To document

Abstract

Soil fertility building measures should be explored at the short and long-term for an adequate evaluation of their impact on sustaining yields and of its environmental consequences in crop rotations under organic farming. For such a purpose, process-based crop models are potential useful tools to complement and upscale field observations under a range of soil and climatic conditions. Organic rotations differ in soil fertility dynamics in comparison to conventional farming but very few modelling studies have explicitly considered this specific situation. Here, we evaluate the FASSET model to predict the effects of different fertility management options in organic crop rotations on dry matter (DM) and nitrogen (N) yield, and soil N dynamics, including N2O emissions. For that, we used data from seven short and long-term field experiments in different agro-climatic environments in Europe (Norway, Denmark, Poland, Switzerland, Italy and Spain) including climate, soil and management data. Soil fertility building measures covered fertilization type, green manures, cover crops, tillage, crop rotation composition and management (organic or conventional). Model performance was evaluated by comparing observed and simulated values of crop DM and N yield, soil mineral N and nitrous oxide (N2O) emissions using five complementary statistical indices. The model closely reproduced most observed DM and N yield trends and effects of soil fertility building measures in arable crops, particularly in cereals. Contrary, yields of grass-clover, especially N, were generally reproduced with low degree of accuracy. Model performance for simulating soil mineral N depended on site and the availability of soil and management information. Although high uncertainty was associated to the simulation of soil N dynamics, differences of cumulative N2O emissions between fertility building measures were reflected in model outputs. Aspects for modelling improvement include cover crop growth and decomposition, biological N fixation (BNF) or weed and pest soil-crop interactions. It is concluded that FASSET can be successfully used to investigate the impact of fertilization type, green manures, tillage and management (organic or conventional) on crop productivity and to a certain extent on soil N dynamics including soil N2O emissions at different soils and climates in organic farming in Europe.

To document

Abstract

Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability detemined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries.

Abstract

This study examines the relationships between profitability, nitrogen (N) surplus, greenhouse gas emissions (GHG), and energy intensity and factors influencing these relationships in dairy farming. In-depth data from 10 conventional and 8 organic dairy farms in Western Norway were analyzed. Organic farms had lower N surplus per hectare (local, onfarm) and per unit output (global, cradle-to-farm-gate), and lower estimated GHG emissions and energy intensity per unit output, whereas labor input and farm profits did not differ. Higher profitability tended to be associated with improved performance of the environmental indicators examined. Intensification through increased use of concentrates tended to improve profit and reduce N surplus, GHG emissions, and energy intensity per unit output within each farming system while N surplus per hectare could be negatively affected. To ensure a balanced representation of the environmental consequences of both organic and conventional farming systems,our results give support to extensive examination of both area and product-based environmental performance indicators.

Abstract

To improve environmental sustainability it is important that all sectors in a society contribute to improving the utilization of inputs as energy and nutrients. In Norway, dairy farming contributes with an important share to the added value from the agricultural sector, although there is little information available about utilization of energy and nitrogen (N). Many results on sustainability have been published on dairy farming. However, due to Norway’s Nordic climatic conditions, mountainous and rugged topography and an agricultural policy that can design its own prices and subsidies, results from other countries are hardly representative for Norwegian conditions. To bridge this gap, the objective of this study was to analyse if the utilisation of nitrogen and energy in dairy farming in Norway can be improved to strengthen its environmental sustainability. Data were collected from 2010 to 2012 on 10 conventional and 10 organic farms in a region in central Norway with dairy farming as the main enterprise. The farms varied in area, number of dairy cows and milk yield. For nitrogen, a farm gate balance was applied and supplemented with nitrogen fixation by clover and atmospheric N-deposition. The total farm area was broken down into three categories: dairy farm area utilized directly by the farm, off-farm area needed to produce imported roughages and concentrates, and free rangeland that only can be used for grazing.

Abstract

Phosphorus (P) should be recycled from organic wastes as much as possible, and input is needed in stockless organic agriculture. Seven organic residues were assessed and compared them to mineral P fertilizer and rock phosphate as fertilizer for barley. P availability in the mixtures and residual P availability were also assessed by diffusive gradients in thin films (DGT). The best availability was found in digested liquid manure followed by wood ash, fish sludge, composted solid manure and composted food waste. Meat and bone meal, the commercially available product Ladybug plus and rock phosphate had low P availability at the same level as no P. Only wood ash had significant P available for the next crop. The pH level of the soil did not affect P availability for any of the P sources. DGT predicted P availability moderately well, as it measures P supply over a short period without any biological factors.

To document

Abstract

Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.

To document

Abstract

Under Norwegian conditions, diets based on primary growth (PG) silage typically increase milk yield compared to silage prepared from the regrowth (RG). Organic PG, dominated by immature grasses, is often high in energy and low in crude protein (CP), whereas the opposite is the case for organic RG harvests, dominated by clover. Here, we tested the hypotheses that increasing proportions of RG will reduce the total supply of metabolizable energy, but increase the CP intake, and that there is a dietary optimal mix of PG and RG to meet requirements for optimal milk production. Sixteen Norwegian Red cows were used in an experiment designed with four balanced 4 × 4 Latin squares with 21-day periods to evaluate the effect of incremental replacement of PG with RG on feed intake, nutrient digestion, and milk production. Silages were prepared from PG and RG of an organically managed grassland. Treatments comprised silages fed ad libitum with RG replacing PG in ratios of 0, 0.33, 0.67, and 1 on dry matter (DM) basis. Additionally, concentrate was offered with 8 kg for pluriparous and 7 kg for primiparous cows. The PG had higher content metabolizable energy (ME), potentially degradable neutral detergent fiber (NDF), and water-soluble carbohydrates, while RG contained more CP and indigestible NDF. The already mentioned characteristics led to higher intakes of DM, organic matter, NDF, and ME and lower intakes of CP and indigestible NDF with increasing proportions of PG in the diet. Milk yield tended to be higher when PG and RG were offered as a mixture than when fed alone. The milk fat concentration decreased linearly with increasing proportions of RG proportion, while protein concentration was unaffected by diet. This led to a similar production of energy-corrected milk among cows fed diets containing PG while cows fed pure RG diet produced 0.9 kg less daily. Silage energy concentration and energy intake influenced milk production more than CP supply.

To document

Abstract

Quality traits are highly focused upon in the marketing of organic food products. There is a need to define and measure quality as consumers seem to have preconceived notions about the superior health value and taste of organic compared to non-organic products. A commonly held opinion among many consumer groups is that organic farming guarantees optimum quality, despite the fact that this remains unproven. The aim of this paper is to contribute to a better understanding of the complexity of quality traits in a plant-based food product, using carrots as an example. Selected designated quality aspects are presented to describe the complexity of quality and discuss the challenges of using these aspects in differentiating between organic and conventional products. The paper concludes we have insufficient tools to be able to adequately authenticate organically produced carrots. The same may be the case for most vegetables and fruit products. Suggestions for further studies include the soil and location aspect (terroir), in order to trace a product back to its origin in an organically or conventionally farmed field by finding a unique fingerprint for chemical constituents of samples.

To document

Abstract

Embodied energy in barns is found to contribute to about 10–30% of total energy use on dairy farms. Nevertheless, research on sustainability of dairy farming has largely excluded consideration of embodied energy. The main objectives of this study were to apply an established model from the residential and commercial building sector and estimate the amount of embodied energy in the building envelopes on 20 dairy farms in Norway. Construction techniques varied across the buildings and our results showed that the variables which contributed most significantly to levels of embodied energy were the area per cow-place, use of concrete in walls and insulation in concrete walls. Our findings are in contrast to the assumption that buildings are similar and would show no significant differences. We conclude that the methodology is sufficiently flexible to accommodate different building design and use of materials, and allows for an efficient means of estimating embodied energy reducing the work compared to a mass material calculation. Choosing a design that requires less material or materials with a low amount of embodied energy, can significantly reduce the amount of embodied energy in buildings.

To document

Abstract

The calculation of the embedded energy (EE) of twenty barns shows that there is a considerable variation of EE per cow, where the lowest values were one fourth of the highest. Use of timber instead of concrete in walls had most effect to reduce the amount of EE. Cold barns can contribute to reduce the amount of EE, while the amount of EE is higher in free-stall than in tie-stall barns.While for an existing building the amount of EE is nearly fixed, calculating the anticipated amount for a new building can contribute to reduce this value considerably. This progress can help to reduce energy use in organic agriculture and thus contribute to a more sustainable production. Incorporating EE in planning new buildings should be of special importance for organic farming, since regulations demand for more area per animal than in conventional farming. In addition to building new, renovation and extension as well as recycling of building materials should be considered. Planning a new building should also include other topics as operational energy, as well as working conditions, animal welfare and economic considerations.

Abstract

This ESEE 2011 conference paper examines attitudes to private and public goods and bads from agriculture in Norway with a particular focus on organic agriculture. The issue is based on a survey among 939 Norwegians. The results show that the respondents strongly value public attributes of agriculture like a vivid countryside and cultural landscapes. Almost 60 percent of the sample emphasise that the government should aim to increase the production and sale of organic food. Respondents’ behaviour as consumers were investigated by collecting and analysing data that indicate which conditions respondents find most important when they buy milk, eggs, carrots and ketchup. Important conditions were taste, fresh, produced in Norway and no use of pesticides or fertilizers. The most important reasons for buying organic food were avoidance of pesticides, health and environmental concerns.

To document

Abstract

In the iPOPY project (innovative Public Organic food Procurement for Youth), one of the tasks was to map the challenges linked to the supply chains of organic food, and to which extent the participating countries have developed any form of certification of out-of-home food serving. For primary production and processing, regulations have been developed on the EU level. Norway, as a member of the EEA, is obliged to follow these EU regulations. However, the EU regulations on organic agriculture do not comprise catering, restaurants and other out-of-home food service. Hence, various countries have developed different systems to certify e.g. restaurants wanting to market their organic menus. This report describes the systems in Denmark, Finland, Italy, Norway and Germany. Germany has been used as a reference, since this country is especially familiar to the first author of the report, Dr. Carola Strassner, due to former work and analyses. The report is based on information acquired from certification bodies and experts in each country by questionnaires communicated via e-mail, and subsequent telephone interviews.

To document

Abstract

The objectives of this study were to investigate whether there were differences between Norwegian Red cows in conventional and organic farming with respect to reproductive performance, udder health, and antibiotic resistance in udder pathogens. Twenty-five conventional and 24 organic herds from south-east and middle Norway participated in the study. Herds were matched such that geographical location, herd size, and barn types were similar across the cohorts. All organic herds were certified as organic between 1997 and 2003. All herds were members of the Norwegian Dairy Herd Recording System. The herds were visited once during the study. The relationship between the outcomes and explanatory variables were assessed using mixed linear models. Results: There were less > 2nd parity cows in conventional farming. The conventional cows had higher milk yields and received more concentrates than organic cows. Although after adjustment for milk yield and parity, somatic cell count was lower in organic cows than conventional cows. There was a higher proportion of quarters that were dried off at the herd visit in organic herds. No differences in the interval to first AI, interval to last AI or calving interval was revealed between organic and conventional cows. There was no difference between conventional and organic cows in quarter samples positive for mastitis bacteria from the herd visit. Milk yield and parity were associated with the likelihood of at least one quarter positive for mastitis bacteria. There was few S. aureus isolates resistance to penicillin in both management systems. Penicillin resistance against Coagulase negative staphylococci isolated from subclinically infected quarters was 48.5% in conventional herds and 46.5% in organic herds. Conclusion: There were no large differences between reproductive performance and udder health between conventional and organic farming for Norwegian Red cows.

Abstract

The frequency with which ewe lambs lay on wooden surfaces at two levels, called ``double bunks,"" was documented by video recording at 6, 11 and 18 months of age: the number in each of 4 pens (n = 4) lying either on double bunks (DBs) or on the expanded metal floor (EMF) was recorded. At 6 months, lambs were sheared half way through the research period and DBs of two different heights (50/60 cm) and depths (60/75 cm) were tested. At other ages the lambs were sheared before testing and all DBs were the 60 cm 60 cm design. Fully fleeced lambs aged 6 months preferred to lie on EMF rather than DB (P < 0.001). After shearing, the use of EMF for resting declined (P < 0.05) and no significant preference between EMF and DB was found. The lambs tended to lie less when newly sheared (P = 0.06). At 11 months, sheared lambs used DB just as much as EMF, whereas 18 month old sheared ewe lambs tended to choose DB to lie on (P = 0.09). At 6 months, there was a tendency for more lambs to rest at ground level in the DB when headroom was higher at 60 cm (P = 0.1). No other preferences between DB designs were found. The results are discussed according to the regulations for organic sheep farming in Norway. The lambs showed little preference for resting on a DB compared to EMF, so there is insufficient evidence to recommend a two-level, wooden lying area for sheep.

Abstract

Temporal changes in the scores of selected soil fertility indices were studied over six years in three different cases of organic crop rotation located in southern, eastern and central Norway. The cropping history and the initial scores of fertility indices prior to conversion to organic cropping differed between the sites. Crop yields, regarded as an overall, integrating fertility indicator, were in all rotations highly variable with few consistent temporal trends following the first year after conversion. On the site in eastern Norway, where conversion followed several years of all-arable crop rotations, earthworm number and biomass and soil physical properties improved, whereas the system was apparently degrading with regard to P and K trade balances and contents in soil. On the other two sites, the picture was less clear. On the southern site, which had a relatively fertile soil before conversion, the contents of soil organic matter and K decreased during the six-year period, but the scores of other fertility indices showed no trends. On the site in central Norway, there were positive trends for earthworm-related indices such as worm biomass and tubular biopores, and negative trends for soil porosity. The results, especially those from the eastern site, illustrate the general difficulty in drawing conclusions about overall fertility or sustainability when partial indicators show divergent trends. Consequently, the study gave no unambiguous support to the initial working hypothesis that organic farming increases inherent overall soil fertility, but rather showed that the effect varied among indicators and depended on status of the cases at conversion. It is concluded that indicators are probably better used as tools to learn about and improve system components than as absolute measures of sustainability.