Abstract

Soil organic carbon (SOC) was studied at 0–45 cm depth after 28 years of cropping with arable and mixed dairy rotations on a soil with an initial SOC level of 2.6% at 0–30 cm. Measurements included both carbon concentration (SOC%) and soil bulk density (BD). Gross C input was calculated from yields. Averaged over all systems, topsoil SOC% declined significantly (−0.20% at 0–15 cm, p = 0.04, −0.39% at 15–30 cm, p = 0.05), but changed little at 30–45 cm (+0.11%, p = 0.15). Declines in topsoil SOC% tended to be greater in arable systems than in mixed dairy systems. Changes in BD were negatively related to those in SOC%, emphasizing the need to measure both when assessing SOC stocks. The overall SOC mass at 0–45 cm declined significantly from 98 to 89 Mg ha−1, representing a loss of 0.3% yr−1 of the initial SOC. Variability within systems was high, but arable cropping showed tendencies of high SOC losses, whilst SOC stocks appeared to be little changed in conventional mixed dairy with 50% ley and organic mixed dairy with 75% ley. The changes were related to the level of C input. Mean C input was 22% higher in mixed dairy than in arable systems.

To document

Abstract

Microbes are central drivers of soil processes and in-depth knowledge on how agricultural management practices effects the soil microbiome is essential in the development of sustainable food production systems. Our objective was therefore to explore the long-term effects of organic and conventional cropping systems on soil bacterial and fungal quantity, their community structures and their combined function. To do so, we sampled soil from a long-term experiment in Southeast Norway in 2014, 25 years after the experiment was established, and performed a range of microbial analyses on the samples. The experiment consists of six cropping systems with differences in crop rotations, soil tillage, and with nutrient application regimes covering inorganic fertilizers, cattle slurry (both separately and combined with inorganic fertilizers) and biogas residues from digested household biowaste. The quantity of soil microbes was assessed by extraction of microbial C and N and by analysis of soil DNA (bacterial 16S rRNA, and fungal rRNA internal transcribed spacer region). The structures of the microbial communities were determined and assessment of relatedness of bacterial and fungal communities was done by the unweighted pair group method. Estimates of richness and diversity were based on numbers of unique operational taxonomic units from DNA sequencing and the function of the microbial assembly was measured by means of enzyme assays. Our results showed that production systems including leys had higher microbial biomass and higher numbers of bacterial and fungal gene copies than did systems with cash crops only. A cropping system which appeared to be particularly unfavourable was a reference-system where stubble, roots and exudates were the single source of organic material. Production system significantly affected both bacterial and fungal community structures in the soil. Systems including leys and organic fertilization had higher enzyme activities than did systems with cash crops only. An inclusion of ley in the rotation did not, however, increase either microbial richness or microbial diversity. In fact, the otherwise suboptimal reference-system appeared to have a richness and diversity of both bacteria and fungi at levels similar to those of the other cropping systems, indicating that the microbial function is largely maintained under less favourable agricultural treatments because of the general resilience of soil microorganisms to various stresses. Neither disturbance through tillage nor the use of chemical fertilizer or chemical plant protection measures seemed as such to influence soil microbial communities. Thus, no differences between conventional and organic farming practices as such were found. We conclude that the choice of agricultural management determines the actual microbial community structure, but that biodiversity in general is almost unaffected by cropping system over many years. Adequate addition of organic material is essential to ensure a properly functioning microbial ensemble and, thus, to secure soil structure and fertility over time.

Abstract

Mechanistic, multi-compartment decomposition models require that carbon (C) and nitrogen (N) in plant material be distributed among pools of different degradability. For this purpose, measured concentrations of C and N in fractions obtained through stepwise chemical digestion (SCD) and values predicted from near-infrared (NIR) spectra or total plant N concentration were compared. Seventysix cash, forage, green manure and cover crop plant materials representing a wide range in biological origin and chemical quality were incubated in a sandy soil at 15 degrees C and -10 kPa water potential for 217 d. A mechanistic decomposition model was calibrated with data from soil without plant material and initialised by data on amounts of C and N in fractions obtained from SCD directly or C and N in SCD fractions as predicted from NIR spectroscopy or plant N concentration. All model parameters describing C and N flows from plant material were kept at default values as defined in previous, independent works with the same model. When results from SCD were used directly to initialise the decomposition model, C and N mineralisation dynamics were predicted well (r(2) = 0.76 and 0.70 for C mineralisation rates and accumulation of inorganic N, respectively). When a NIR calibration was used to predict the SCD data, this resulted in nearly equally good model performance (r(2) = 0.76 and 0.69 for C and N mineralisation, respectively). This was also the case when SCD data were predicted from plant material N concentration (r(2) = 0.76 and 0.69 for C and N). We conclude that the combined use of a mechanistic decomposition model and quality data from SCD is a highly adequate basis for an a priori description of the mineralisation of both C and N from common agricultural plant materials, and that both NIR spectroscopy and measurement of total N concentration offer good and cost-effective alternatives if they are calibrated with SCD data. (C) 2007 Elsevier Ltd. All rights reserved.

Abstract

In order to improve the basis for utilising nitrogen (N) fixed by white clover (Trifolium repens L.) in northern agriculture, we studied how defoliation stress affected the N contents of major plant organs in late autumn, N losses during the winter and N accumulation in the following spring. Plants were established from stolon cuttings and transplanted to pots that were dug into the field at Apelsvoll Research Centre (60 degrees 42'N, 10 degrees 51' E) and at Holt Research Centre (69 degrees 40' N, 18 degrees 56' E) in spring 2001 and 2002. During the first growing season, the plants were totally stripped of leaves down to the stolon basis, cut at 4 cm height or left undisturbed. The plants were sampled destructively in late autumn, early spring the second year and after 6 weeks of new spring growth. The plant material was sorted into leaves, stolons and roots. Defoliation regime did not influence the total amount of leaf N harvested during and at the end of the first growing season. However, for intensively defoliated plants, the repeated leaf removal and subsequent regrowth occurred at the expense of stolon and root development and resulted in a 61-85% reduction in the total plant N present in late autumn and a 21-59% reduction in total accumulation of plant N (plant N present in autumn + previously harvested leaf N). During the winter, the net N loss from leaf tissue (N not recovered in living nor dead leaves in the spring) ranged from 57% to 74% of the N present in living leaves in the autumn, while N stored in stolons and roots was much better conserved. However, the winter loss of stolon N from severely defoliated plants (19%) was significantly larger than from leniently defoliated (12%) and non-defoliated plants (6%). Moreover, the fraction of stolon N determined as dead in the spring was 63% for severely defoliated as compared to 14% for non-defoliated plants. Accumulation in absolute terms of new leaf N during the spring was highly correlated to total plant N in early spring (R-2 = 0.86), but the growth rates relative to plant N present in early spring were not and, consequently, were similar for all treatments. The amount of inorganic N in the soil after snowmelt and the N uptake in plant root simulator probes (PRS (TM)) during the spring were small, suggesting that microbial immobilisation, leaching and gas emissions may have been important pathways for N lost from plant tissue.