Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Norway stretches from latitude 58° to 71° north. Thus, the climate is very different in the south compared to the north. Since seed production in the north is unpredictable due to the short growing season, commercial seed production of perennial forage grass cultivars has been located in the south-eastern part of Norway. We tested freezing and ice-encasement tolerances of three seed lots of different age of each of the northern-adapted cultivars ‘Engmo’ and ‘Noreng’. The seed lots were prebasic (original), intermediate (mid), and current commercial (late). The results showed that both cultivars had reduced freezing tolerance when comparing plants from the original seed lots with plants from the current commercial seed lots, which originate from several generations of seed multiplication in the south. Regarding tolerance toward ice-encasement, there were no significant differences between seed lots or cultivars. This indicates phenotypic and genetic shifts within the cultivars towards less frost-tolerant populations. It is therefore important to implement seed production regimes of northern-adapted cultivars that reduce the risk of shifts and preserve the cultivar characteristics.

To document

Abstract

Multiple ecological drivers, along with forest age, determine the species composition of boreal forest ecosystems. However, the role of age in successional changes in forests cannot be understood without taking site conditions, the disturbance regime and forest structure into account. In this study, we ask two research questions: 1. What is the relationship between forest age and overall species composition in older near-natural spruce forests, i.e. forests of age beyond harvest maturity? 2. Do species associated with different forest habitats respond similarly to variation in forest age? Data were collected in 257 Norway spruce dominated 0.25 ha plots from three study areas in Southeastern and Central Norway. Species inventories were conducted for lichens and bryophytes on trees and rocks, vascular plants on the forest floor, and for deadwood-associated bryophytes and polypore fungi. Although NMDS ordination analyses of the total species composition identified a main axis related to the age of the oldest trees in two of the study areas, variation partitioning analyses showed that age explained a small fraction of variation of the species composition compared to site conditions, logging history, forest structure, and differences between the sites in all habitats. The unique variation explained by forest age species was, however, significant for all habitats. The fraction of variation in species composition explained by forest age was the largest for lichens and bryophytes on trees, and for deadwood-associated bryophytes and polypore fungi. Our results suggest that practical mapping of near-natural forests for management purposes inventories should include site conditions, forest structure and between site differences in addition to forest age.

To document

Abstract

Rearing of replacement heifers makes up a significant part of the total costs in dairy farming. Nevertheless, the average age at first calving for dairy heifers still stays well above 2 years in many countries. This study examined the economic and environmental impacts of increased heifer growth rates and reduced replacement rates on Norwegian dairy farms. The current average growth rate in Norway (baseline scenario) was compared to an accelerated growth rate scenario. Within each of the two growth rate scenarios, we compared three different cow replacement rates. A farm account survey dataset containing physical and economic data on 311 Norwegian farms was clustered into three farm groups: small, medium, and large. To model economic consequences, we used the whole-farm linear programming model ScotFarm. A life cycle analysis model was used to model the environmental impacts of the baseline scenario and an accelerated growth rate scenario on the three farm groups. Accelerated heifer growth rate had a positive effect (14–28%) on farm annual gross margin depending on farm size. While accelerated growth rate resulted in only minor reductions in total emissions at farm level compared to the baseline scenario, reduced replacement rate lowered total farm level emissions by up to 8%, and emissions per unit of output by up to 6%. We conclude that an accelerated heifer growth rate scenario could potentially increase farm gross margin by some 14–28% compared with a baseline growth rate scenario. Reducing the replacement rate would be more efficient to reduce farm−level greenhouse gas emissions.

To document

Abstract

Hydro-pedotransfer functions (PTFs) relate easy-to-measure and readily available soil information to soil hydraulic properties (SHPs) for applications in a wide range of process-based and empirical models, thereby enabling the assessment of soil hydraulic effects on hydrological, biogeochemical, and ecological processes. At least more than 4 decades of research have been invested to derive such relationships. However, while models, methods, data storage capacity, and computational efficiency have advanced, there are fundamental concerns related to the scope and adequacy of current PTFs, particularly when applied to parameterise models used at the field scale and beyond. Most of the PTF development process has focused on refining and advancing the regression methods, while fundamental aspects have remained largely unconsidered. Most soil systems are not represented in PTFs, which have been built mostly for agricultural soils in temperate climates. Thus, existing PTFs largely ignore how parent material, vegetation, land use, and climate affect processes that shape SHPs. The PTFs used to parameterise the Richards–Richardson equation are mostly limited to predicting parameters of the van Genuchten–Mualem soil hydraulic functions, despite sufficient evidence demonstrating their shortcomings. Another fundamental issue relates to the diverging scales of derivation and application, whereby PTFs are derived based on laboratory measurements while often being applied at the field to regional scales. Scaling, modulation, and constraining strategies exist to alleviate some of these shortcomings in the mismatch between scales. These aspects are addressed here in a joint effort by the members of the International Soil Modelling Consortium (ISMC) Pedotransfer Functions Working Group with the aim of systematising PTF research and providing a roadmap guiding both PTF development and use. We close with a 10-point catalogue for funders and researchers to guide review processes and research.