Arne Steffenrem

Research Scientist

(+47) 916 70 420
arne.steffenrem@nibio.no

Place
Steinkjer

Visiting address
Innocamp Steinkjer, Skolegata 22, 7713 Steinkjer

Abstract

• Genetic effects of continuous cover forestry (CCF) are not well known. We need more research, especially on the genetics of spruce-dominated CCF sites. Levels of relatedness are of interest, as are estimates of safe limits for the intensity and duration of CCF practices that secure genetic potential for good growth and quality. • With even-aged forestry, genetically improved regeneration material can be used to mitigate climate change-related risks through breeding and deployment recommendations. In CCF, currently based on natural regeneration, we assume that enough seedlings establish, and that sites contain enough genetic variation to enable natural selection and evolutionary processes. • Based on research in other regions, the number of reproducing trees must be kept large to avoid excessive levels of relatedness and inbreeding and to maintain suffcient levels of genetic diversity. • In some well-documented long-term experiments in other regions, intensive high-grading has led to slower growth rates, which could partly be due to genetic degradation of the stand. If contemporary recommendations for selection cutting are followed, negative genetic effects should be unlikely.

To document

Abstract

Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1.