Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Potato Cyst Nematodes (PCN) (Globodera rostochiensis and G. pallida Woll.) are quarantine pests of potato (Solanum tuberosum L.) worldwide capable of causing significant yield loss and difficult to manage with conventional methods. The study explored the diversity of antagonistic fungi associated with PCN obtained from soil samples collected in Nyandarua and Nakuru Counties in Kenya and their effect on PCN egg viability and hatching was also evaluated. Twelve fungal isolates from five genera were isolated and characterized using morphological and molecular techniques. The twelve isolates were Trichoderma asperellum (4), T. hamatum, T. breve, T. atrobruneum, Amanita basiorubra, Setophoma terrestris (2), Penicillium chrysogenum and Clonostachys rosea. The most abundant isolate was Trichoderma spp. with 58 % occurrence. The effect of seven of the isolates on PCN eggs showed that T. breve and P. chrysogenum reduced egg viability by 41 % and 34 %, respectively while T. asperellum and T. breve reduced their hatching by 50 % on average. Trichoderma atrobrunneum, T. hamatum, and A. basiorubra also reduced the PCN egg viability by 27 % on average. These fungal isolates could provide a potential tool for PCN management in potato production systems for improved yields. However, further studies are warranted to validate these findings under greenhouse and field conditions. A more comprehensive bioprospecting survey for PCN associated antagonistic fungi needs to be extended to other potato growing regions to explore further cyst pathogens.

To document See dataset

Abstract

Global measures to bring net-zero-carbon and zero-waste emissions are expanding at a rapid pace. Currently, only 16% of the plastic waste from the food industrial sector is reprocessed and recycled, which is way lesser than its accumulation. Several countries have imposed a ban on single-use plastic derived from food and/or beverage industries. All these constraints and challenges have encouraged researchers to find a sustainable alternative to petroleum-based food packaging. The environmentally friendly substitute can be the bio-based polymer material derived from agri-food and marine wastes that connect the waste loop in the current economic model. This waste has the most valuable biopolymer mainly present in the cell wall matrix of plants, animals, bacteria, fungi, and algae. All these biopolymers are either accumulated in a landfill or not entirely harvested their high-value compounds as a potential feedstock. Nevertheless, bio-based polymers have better thermos-mechanical properties that can resist various conditions. They comprise superior functional properties when these biopolymers are coupled with other organic compounds such as composite films or multilayer packaging films which enhance the shelf-life of the food. Overall, biopolymers readily react with the soil microbes under specified environmental conditions that can significantly enhance the biodegradability of packaging material. This unique quality is envisaged to solve the existing problems and detrimental effects of synthetic polymer usage in the food industry. In this background, in this chapter, the origin of biopolymers and their potential functionality, mechanical property, and degradability as food packaging materials are discussed. Their current challenges and possible future prospects are also meticulously highlighted.

To document

Abstract

Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16–18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.

To document

Abstract

Vaccinium berries include several economically important cultivated and wild species such as blueberries, cranberries, bilberries and lingonberries. These species are recognized for the various health beneficial properties, which are generally linked to the high yields and the complex profile of flavonoids in the berries, including anthocyanin, proanthocyanidin, and flavonol classes of flavonoids. Anthocyanins are one of the main pigments in plants contributing to the characteristic reddish to bluish colours in flowers and fruits. Most important anthocyanins are glucosides of six common aglycons: cyanidins, delphinidins, pelargonidins, petunidins, peonidins and malvidins. Of these, delphinidin branch anthocyanins, namely delphinidins, petunidins, and malvidins are responsible of bluish colours in blue Vaccinium berries. The biosynthesis of anthocyanins has been intensively studied, and the structural enzyme genes responsible of the specific steps of the pathway have been characterised also in diverse Vaccinium species. For the delphinidin branch, flavanone 3’5’ hydroxylase (F3’5’H) is the key enzyme for the branching point towards bluish anthocyanins. Our recent results both from controlled and field experiments have revealed new information on the key regulators controlling the different branches of the anthocyanin biosynthesis in blue-coloured berries. Transcriptome analyses combined with metabolite results have identified signaling routes leading to increase in delphinidin branch anthocyanins. Our results show that the anthocyanin composition in blue Vaccinium berries could be modified by specific environmental factors.

To document

Abstract

The aim of this study was to find the chemical parameters for the differentiation of plum cultivars grown along the fjord areas of Western Norway and Eastern Norway, having specific agroclimatic conditions. Chemical analysis of the fruits confirmed the contents of 13 quantified elements, 22 sugar compounds, 11 organic acids, 19 phenolic compounds, and antioxidant activity in 68 plum cultivars. Dominated contents were noted for nitrogen (with the maximum mean value of 3.11%), potassium (8055.80 mg/kg), and phosphorous (7878.88 mg/kg). Averagely, the highest level of sugars was determined for glucose (244.46 g/kg), fructose (197.92 g/kg), sucrose (208.25 g/kg), and sorbitol (98.02 g/kg), organic acids for malic acid (24.06 g/kg), and for polyphenol compounds were 5-O-caffeoylquinic acid (66.31 mg/kg), and rutin (58.06 mg/kg). Applied principal component analysis has been useful for distinguishing the plum cultivars from three areas in Norway where copper, iron, potassium, magnesium, manganese, and sodium; sucrose, ribose, maltose, and raffinose; p-hydroxybenzoic acid, rutin, ferulic acid, kaempferol 7-O-glucoside, p-coumaric acid, and 5-Ocaffeoylquinic acid were the most influential. In regard to human health and future breeding work that will have the aim to produce functional food with high health-related compounds, the plum cultivar ‘Mallard’ should be underlined due to the high level of elements, ‘Valor’ due to high sugar content, ‘Helgøyplomme’ due to content of organic acids, and ‘Diamond’ due to the content of phenolic compounds.