Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Zachary Winkler Laura E. Boucheron Santiago Utsumi Shelemia Nyamuryekung'e Matthew McIntosh Richard E. EstellAbstract
Body condition score (BCS) has been a useful tool in estimating the health of cattle for many years now. This categorical metric requires experienced observers to visually inspect cows and assess body fat deposits regularly via a time consuming, subjective process. Low cost RGB+depth cameras have been used alongside machine learning algorithms in the past and have shown great promise, however, more advanced techniques are projected to yield better performance. In this work, a vision transformer (ViT) is pretrained using a recently developed self-supervised pretraining method, masked image modeling, and then fine-tuned on RGB+depth BCS data with the objective of improving performance. Model accuracy was found to be highly dependent on dataset curation, ranging from 64% to 92% accuracy. These discrepancies are attributed to non-unique data in the training and test splits and an inherently unbalanced dataset, both of which are discussed in detail. It is recommended that engineers and animal scientists collaborate more closely, as certain details related to dataset curation are critical to thoroughly assess performance and robustness of automated methods for BCS determination.
Authors
Martha Irene Grøseth Linda Karlsson Håvard Steinshamn Marianne Johansen Alemayehu Kidane Sagaye Egil PrestløkkenAbstract
No abstract has been registered
Abstract
The substitution of chemical nitrogen (N) fertilizer with organic fertilizer (organic substitution, OS) is increasingly applied in crop production, due to its environmentally friendly characteristics, low price, and high crop and soil improvement efficacies. Here, we studied the effects of chemical N fertilizer with organic fertilizer treatment at different proportions (no organic substitution (NOS), 20% (OS-20), 40% (OS-40), 60% (OS-60), 100% (OS-100), and 200% (OS-200, double the organic fertilizer application amount of OS-100) on the yield and quality of apples in the Shanxi Province of China. The results revealed that, compared to the NOS, the total apple yields of OS treatments, especially the OS-60 and OS-100 treatments, decreased. However, all OS treatments, except OS-200, increased the yield of large-sized fruits (transverse diameter ≥ 85 mm) and the mean mass of apple fruits, and significantly decreased yield of small-sized fruits (transverse diameter < 75 mm). All OS treatments, especially OS-40, promoted the total sugar and vitamin C (Vc) contents and fruit hardness of apples, and OS-40, OS-60, and OS-200 resulted in significantly decreased titratable acid contents in apples. The influence of organic substitutions on soil quality was further investigated in a two-year field experiment. The results showed that the influence of organic substitution on soil chemical properties differed between the two years. Notably, 40% OS increased the soil organic carbon (SOC) content and the C/N ratio in the upper 20 cm of the soil in both years. Additionally, OS treatments reduced the residual nitrate (NO3−)-N (RN) content in deep soil layers, suggesting that OS has the potential to alleviate N leaching. Moreover, redundancy analysis (RDA) of the soil, fruit yield, and fruit quality parameters revealed that the SOC content in the 0–20 cm soil layer and the RN content in the 0–100 cm soil layer had the greatest impact on the fruit quality and yield variables, respectively. This study showed that the proper substitution (40%) of chemical N fertilizer with organic fertilizer could improve the yield of large-sized fruits, the mean mass and fruit quality of apples, and soil chemical properties. Our study will provide a basis for rational organic substitution in apple orchards.
Abstract
No abstract has been registered
Abstract
Compared to fluctuating soil water (FW) conditions, stable soil water (SW) can increase plant water use efficiency (WUE) and improve crop growth and aboveground yield. It is unknown, however, how stable and fluctuating soil water affect root vegetables. Here, the effects of SW and FW were studied on cherry radish in a pot experiment, using negative pressure irrigation and conventional irrigation, respectively. The assessed effects included agronomic parameters, physiological indices, yield, quality and WUE of cherry radish. Results showed that under similarly average soil water contents, compared with FW, SW increased plant photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf proline content by 13.7–73.3% and malondialdehyde content by 12.5–40.0%, and increased soluble sugars content by 6.3–22.1%. Cherry radish had greater biomass accumulation and nutrient uptake in SW than in FW. Indeed, SW increased radish output by 34.6–94.1% with no influence on root/shoot ratio or root quality. In conclusion, soil water stability affected directly the water physiological indicators of cherry radish and indirectly its agronomic attributes and nutrient uptake, which in turn influenced the crop biomass and yield, as well as WUE. This study provides a new perspective for improving agronomy of root crops and WUE through managing soil water stability.
Abstract
We studied the environmental control of shoot growth and floral initiation in annual shoot plants of four red currant cultivars under phytotron conditions. Under natural day length conditions at Ås, Norway (69°40’N), the cultivars ‘Junifer’, ‘Red Dutch’, and ‘Rosetta’ ceased growing and initiated irregular flower formation at 24 and 18°C in late August, indicating a critical photoperiod of approximately 15 h. At 12°C and under outdoor conditions, the processes were delayed by 3-6 weeks depending on the cultivar, indicating a critical photoperiod of approximately 14 h under Nordic field conditions. In 10-h short day (SD), the cultivars ‘Junifer’, ‘Red Dutch’ and ‘Rovada’ ceased growing within 2-3 weeks at 18 and 24°C and within 2-4 weeks at 12°C, followed by irregular floral initiation. However, in 20-h long day (LD), flower initiation was generally scarce, and with contrasting temperature responses among the cultivars, flower initiation was advanced by low temperature in ‘Red Dutch’ and by high temperature in ‘Rovada’ and ‘Junifer’. Flowering performance in the following spring confirmed these results, which demonstrate that red currants are quantitative SD plants with diverse temperature and photoperiod interactions.
Abstract
Background: Soil water and organic carbon (C) are key factors affecting the growth and development of apple seedlings. The objective of the study was to investigate the effects of different soil moisture and glucose supplies on apple seedling growth and soil enzyme activities. We hypothesized that the growth of apple seedlings was affected by soil water and C content through their effects on root structure, plant physiological properties and soil enzymatic activities. A pot experiment consisting of nine treatments was set up, including three water treatments with soil moisture contents at 75–85% (normal irrigation, CK), 65–75% (light water stress, LS), and 55–65% (mild water stress, MS) of the soil field capacity, in combination with three glucose treatments with carbon/nitrogen (C/N) ratio of 7.5 (C1, no adding glucose), 10 (C2) and 15 (C3), respectively. Results: Results showed that the LSC2 treatment significantly increased plant height by 7%, stem diameter by 5% and leaf area by 17%, as compared with LSC1. Also, LSC2 significantly increased root dry weight, root vitality and soil enzyme activities. Moreover, results of leaf photosynthetic, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) and proline contents also proved that adding glucose improved the drought resistance of plants. Conclusion: LSC2 treatment is more conducive to the growth of apple seedlings, and application of carbon has a good alleviation effect on plant water stress. The study demonstrated that addition of exogenous glucose alleviated light water deficiency, significantly affected root vitality, and promoted apple seedling growth. © 2024 Society of Chemical Industry.
Abstract
No abstract has been registered
Authors
Joel Abbey David Percival Laura Elina Jaakola Samuel K. AsieduAbstract
Botrytis blossom blight disease is one of the major challenges to wild blueberry production with annual losses frequently exceeding 20%. In this study, the effect of different fungicide treatments on Botrytis blight development and yield, as well as the mobility and persistence of these fungicides within flower tissues, and fruit of wild blueberries were evaluated under field conditions. This multi-year trial examined five different fungicides (Switch®, Luna Tranquility®, Merivon® Xenium, Propulse®, and Miravis® Prime) each one applied twice at 7-10-day interval. Fungicide quantification in the floral and berry tissues was conducted using a modification of the QuEChErs extraction method and analyzed with GC-MS and HPLC-MS. All the treatments except Switch® reduced disease incidence by over 78 % and severity by over 40 %, compared to the control plots. Switch® and Miravis® Prime reduced both incidence and severity by over 64 % compared to the control plots. Luna Tranquility®, Merivon® Xenium, and Propulse® reduced incidence by at least 47 % and severity by 51 % compared to the control plots. Berry yields were higher in Switch®, Luna Tranquility® and Miravis® Prime treated plots with at least a 19% increase in yield compared to the control plots. The mean concentration of all quantified fungicides was higher in the corolla compared to the gynoecium and the androecium sample areas. Fungicides were persistent and concentrations were sufficient to suppress Botrytis cinerea at fruit set (10 days post application) with no residue detected in harvested berries, except prothioconazole-desthio.
Authors
Sonja Keel Alice Budai Lars Elsgaard Brieuc Hardy Florent Levasseur Zhi Liang Claudio Mondini Cesar Plaza Jens LeifeldAbstract
To increase soil organic carbon (SOC) storage, we need to improve our understanding on how to make best use of available plant biomass. Is it better to leave harvest residues on the field, or can we achieve higher SOC storage after processing biomass through, for instance, composting or pyrolysis to produce biochar? In the present study, we developed new parameters for different types of exogenous organic materials (EOMs), which allowed us to estimate the long-term effect of EOM addition on SOC storage using the soil carbon model RothC. For this purpose, we used a model version that included two additional EOM pools. First, we simulated the SOC evolution after addition of equal amounts of C in plant material and different EOMs (manure, compost, digestate, biochar) for a 38-year cropland trial in Switzerland. As expected, biochar showed the greatest increase in SOC due to its high stability. Next, we estimated how much C would remain after subjecting equivalent amounts of plant material and other EOMs to different processes. Loss rates of C for different processes were obtained from the literature. Due to different decomposition rates, the amounts of C remaining in the EOMs ranged from 7 % for anaerobic digestion of animal excreta to 100 % for plant material added directly to soil. These amounts of C were then added to the soil in the model experiments. Although the largest amount of C is lost during processing to biochar, biochar would clearly lead to highest long-term SOC stocks. Based on these first results we conclude that the trade-off between off-site stabilization and in-soil mineralization does not compromise the use of biochar for soil C storage. This means that despite the high C losses of about 50 % during biochar production, higher amounts of C remain in the soil because biochar has very low decomposition rates. In terms of C sequestration efficiency, biochar thus clearly outperforms the other biomass processing pathways. However, for practical recommendations, additional factors should be considered, such as nutrient availability of EOMs and environmental effects during processing, storage and soil application like nutrient leaching or gaseous emissions. Furthermore, we suggest a full life cycle assessment that considers e.g. energy costs for transport of biomass and energy savings from fossil fuel substitution by natural gas.