Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Authors
Piotr Bilański Robert Jankowiak Halvor Solheim Paweł Fortuna Łukasz Chyrzyński Paulina Warzecha Stephen Joshua TaerumAbstract
Ophiostomatales (Ascomycota) contains many species, most of which are associated with bark beetles. Some members of this order are plant or animal pathogens, while others colonize soil, different plant tissues, or even carpophores of some Basidiomycota. However, little is known about soil-inhabiting Ophiostomatales fungi. A survey of these fungi associated with soil under beech, oak, pine, and spruce stands in Poland yielded 623 isolates, representing 10 species: Heinzbutinia grandicarpa, Leptographium procerum, L. radiaticola, Ophiostoma piliferum, O. quercus, Sporothrix brunneoviolacea, S. dentifunda, S. eucastaneae, and two newly described taxa, namely Sporothrix roztoczensis sp. nov. and S. silvicola sp. nov. In addition, isolates collected from fallen shoots of Pinus sylvestris that were pruned by Tomicus sp. are described as Sporothrix tumida sp. nov. The new taxa were morphologically characterized and phylogenetically analyzed based on multi-loci sequence data (ITS, β-tubulin, calmodulin, and translation elongation factor 1-α genes). The Ophiostomatales species were especially abundant in soil under pine and oak stands. Leptographium procerum, S. silvicola, and S. roztoczensis were the most frequently isolated species from soil under pine stands, while S. brunneoviolacea was the most abundant in soil under oak stands. The results highlight that forest soil in Poland has a wide diversity of Ophiostomatales taxa, but further studies are required to uncover the molecular diversity and phylogenetic relationships of these fungi, as well as their roles in soil fungal communities.
Authors
Lu FengAbstract
No abstract has been registered
Authors
Lu FengAbstract
No abstract has been registered
Authors
Damaris Marina Matten Ida Marielle Mienna Vanessa Carina Bieker Brent D. Mishler Victoria Stornes Moen Malene Østreng Nygård Katariina Elsa M Vuorinen Mika Bendiksby Michael David Martin James David Mervyn SpeedAbstract
Protected areas are one of the main strategic means for conserving biodiversity. Yet, the design of protected areas usually neglects phylogenetic diversity, an important diversity measure. In this paper we assess the phylogenetic diversity and species richness of vascular plants in Fennoscandian protected areas. We evaluate how much species richness and phylogenetic diversity is found within and outside protected areas, and the differences in plant diversity between different categories of protected areas. We also assess the differences in the diversity-area relationship of the different protected area categories in terms of both species richness and phylogenetic diversity. We build a multi-locus phylogeny of 1,519 native vascular plants of Norway, Sweden, and Finland. We estimate the phylogenetic diversity and species richness by combining the phylogeny with publicly available occurrence data and the currently protected area system of Fennoscandia. Our results indicate that protected areas in Fennoscandia hold more plant diversity when larger, and that phylogenetic diversity increases faster with area than species richness. We found evidence for more plant diversity outside of protected areas of the different countries of Fennoscandia than inside of protected areas, but no evidence for plant diversity differences between areas with different protection status. Hence, our results indicate that the current protected area system in Fennoscandia is no more effective in conserving phylogenetic diversity and species richness of vascular plants than a random selection of localities. Our results also indicate that planning conservation strategies around phylogenetic diversity, rather than species richness, might be a first step to protect vascular plant diversity more effectively. Biodiversity · Spatial phylogenetics · Conservation · Diversity-area relationship · Flora
Abstract
The objective of this study is to identify the needs related to geospatial LC, LU, and LCLUC information for spatial planning in Poland and Norway, and examine the usefulness of CLMS products in the context of these planning systems. The research has conducted based on a comparative analysis of two planning systems, to indicate areas where CLMS can improve or supplement national spatial data. The study shows that CLMS can provide information on up-to-date spatial data showing actual LC/LU/LCLUC, but that the degree of detail and the accuracy may be insufficient. CLMS data is harmonised across Europe and thus meets the need expressed by international organisations, for data that are consistent at a continental level. This is not a requirement in national planning systems in Poland and Norway, where the needs are regulated by national legislation. The thematic and geometric accuracy of national data sources are usually better than the data provided by CLMS, but CLMS might fill gaps when specific topics are missing in national mapping programs.
Abstract
Climate change can have an influence on rainfall that significantly affects the magnitude frequency of floods and droughts. Therefore, the analysis of the spatiotemporal distribution, variability, and trends of rainfall over the Mahi Basin in India is an important objective of the present work. Accordingly, a serial autocorrelation, coefficient of variation, Mann–Kendall (MK) and Sen’s slope test, innovative trend analysis (ITA), and Pettitt’s test were used in the rainfall analysis. The outcomes were derived from the monthly precipitation data (1901–2012) of 14 meteorology stations in the Mahi Basin. The serial autocorrelation results showed that there is no autocorrelation in the data series. The rainfall statistics denoted that the Mahi Basin receives 94.8% of its rainfall (821 mm) in the monsoon period (June–September). The normalized accumulated departure from the mean reveals that the annual and monsoon rainfall of the Mahi Basin were below average from 1901 to 1930 and above average from 1930 to 1990, followed by a period of fluctuating conditions. Annual and monsoon rainfall variations increase in the lower catchment of the basin. The annual and monsoon rainfall trend analysis specified a significant declining tendency for four stations and an increasing tendency for 3 stations, respectively. A significant declining trend in winter rainfall was observed for 9 stations under review. Likewise, out of 14 stations, 9 stations denote a significant decrease in pre-monsoon rainfall. Nevertheless, there is no significant increasing or decreasing tendency in annual, monsoon, and post-monsoon rainfall in the Mahi Basin. The Mann–Kendall test and innovative trend analysis indicate identical tendencies of annual and seasonal rainfall on the basin scale. The annual and monsoon rainfall of the basin showed a positive shift in rainfall after 1926. The rainfall analysis confirms that despite spatiotemporal variations in rainfall, there are no significant positive or negative trends of annual and monsoon rainfall on the basin scale. It suggests that the Mahi Basin received average rainfall (867 mm) annually and in the monsoon season (821 mm) from 1901 to 2012, except for a few years of high and low rainfall. Therefore, this study is important for flood and drought management, agriculture, and water management in the Mahi Basin.
Authors
Trygve S. AamlidAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Thomas Solvin Inger Sundheim Fløistad Gunnar Friis Proschowsky Torben Leisgaard Tiina Ylioja Marko Tynkkynen Brynjar Skúlason Hallur S. Björgvinsson Espen Stokke Marte Friberg Myhre Ellinor Edvardsson Claes UgglaAbstract
No abstract has been registered
Abstract
The effect of steam thermotherapy on Botrytis spp. populations in strawberry transplants was evaluated. Tray plants rooted in 0.2 L peat plugs of seasonal flowering cvs. Falco, Sonsation, and Soprano, and everbearing cvs. Favori and Murano were pre-treated with steam at 37 °C for 1 h, followed by 1 h at ambient temperature and air humidity, and then 2 or 4 h steam treatment at 44 °C. Except for one cultivar with a slight reduction in yield, there were no negative effects on plant performance. Compared to untreated transplants, mean incidence of Botrytis on the five cultivars was reduced by 43 and 86% with the 2 and 4 h treatments, respectively. Within cultivars the reduction was significant in 2 and 3 experiments following the 2 and 4 h treatments, respectively. Sclerotia from four different isolates of Botrytis were subjected to treatment including 4 h of steam thermotherapy and subsequently tested for viability. Following 14 days of incubation, 90 to 100% (mean 97%) of treated sclerotia failed to produce mycelial growth compared with untreated sclerotia, which all germinated and produced mycelia. Botrytis isolates recovered from both treated and untreated strawberry transplants were tested for resistance to seven fungicides, including boscalid, fenhexamid, fludioxonil, fluopyram, pyraclostrobin, pyrimethanil and thiophanate-methyl. Multiple fungicide resistance was common; 35.5% of isolates were resistant to fungicides from at least three FRAC groups. Results indicate that steam thermotherapy treatment strongly reduces populations of Botrytis spp., including fungicide-resistant strains, in strawberry transplants with negligible negative impacts on the transplants.