Marta Vergarechea

Research Scientist

(+47) 453 94 023
marta.vergarechea@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

Abstract

Forests, especially in the northern latitudes, are vulnerable ecosystems to climate change, and tree-ring data offer insights into growth-climate relationships as an important effect. Using the National Forest Inventory plot network, we analysed these correlations for the two dominant conifer species in Norway – Norway spruce and Scots pine – for the 1960–2020 period. For both species, the June climate was an important driver of radial growth during this period. Countrywide, the climate-growth correlations divided the Norwegian forests into spatial clusters following a broad shift from temperature- to water-sensitivity of growth with latitude and altitude. The clusters were delineated by a mean 1960–2020 June temperature of ca. 12°C for Norway spruce and Scots pine. The annual mean growing season and July temperatures – but not June temperature – has increased by 1.0 °C between the 1960–1990 and 1990–2020 periods, with a slight increase in precipitation. Despite this warming and wetting trend, the long-term growth-climate relationship has remained relatively stable between 1960 and 1990 and 1990–2020 for both species. The threshold between temperature and water-sensitive growth has not changed in the last two 31-year periods, following the stability of the June temperature compared with other months during the growing season. These findings highlight geographically coherent regions in Norway, segregating between temperature- and water-sensitive radial growth for the two major conifer species, temporally stable in the long-term for the 1960–2020 period studied.