Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Authors
Cornelya Klutsch Vetle Schwensen Lindgren Simo Maduna Natalia Polikarpova Tommi Nyman Paul Eric Aspholm Kristin Forfang Per-Arne Amundsen Thrond Oddvar Haugen Hans Geir Eiken Snorre HagenAbstract
No abstract has been registered
Authors
Cornelya Klutsch Vetle Schwensen Lindgren Simo Maduna Natalia Polikarpova Tommi Nyman Kristin Forfang Paul Eric Aspholm Per-Arne Amundsen Thrond Oddvar Haugen Hans Geir Eiken Snorre HagenAbstract
No abstract has been registered
Abstract
At the Norwegian Institute of Bioeconomy Research (NIBIO, formerly Bioforsk), biochar has been a topic of research since 2009 through both laboratory and field studies. Initial results demonstrated that biochar produced from clean biomass is safe to use on agricultural soils, and that pyrolysis temperatures of ≥370 °C are necessary for producing biochar that is resistant to decomposition on a timescale of 100 years. Further work identified the chemical transformations that are responsible for biochar stability and contributed to finding the best indicator of this stability. Throughout the years, we have had close collaboration with industry and farmers in Norway, where now industrial networks are in action and there is financial support for the implementation of biochar technology. Despite the convincing benefits of biochar as a climate mitigation solution, it has only slowly advanced beyond the research stage, notably because its effect on yield are too modest. There is therefore a need for win-win biochar solutions benefiting both food production and climate mitigation. Such a solution is the development of biochar fertilizers, which capitalizes on the capacity of biochar to capture and release nutrients. As biochar properties largely depend on pyrolysis conditions and feedstock properties, our current work contributes to the selective design of biochars for the purpose of improving nutrient use efficiency.
Abstract
No abstract has been registered
Abstract
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host‐specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo‐zoogenic faecal water contamination on microbial diversity in lotic ecosystems.
Abstract
The aquatic microbiota is known to be an important factor in the sustainability of the natural water ecosystems. However, the microbial community also might include pathogens, which result in very serious waterborne diseases in humans and animals. Faecal pollution is the major cause of these diseases. Therefore, it is of immense importance to assess the potential impact of faecal pollution, originating from both anthropogenic and zoogenic sources, on the profile of microbial communities in natural water environments. To this end, the microbial taxonomic diversity of lotic ecosystems in different regions of Norway, representing urban and rural areas, exposed to various levels of faecal pollution, was investigated over the course of a 1-year period. The highest microbial diversity was found in rural water that was the least faecally polluted, while the lowest was found in urban water with the highest faecal contamination. The overall diversity of the aquatic microbial community was significantly reduced in severely polluted water. In addition, the community compositions diverged between waters where the dominant pollution sources were of anthropogenic or zoogenic origin. The results provide new insight into the understanding of how faecal water contamination, specifically that of different origins, influences the microbial diversity of natural waters.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Robert Barneveld Sjoerd E.A.T.M. van der Zee Inga Greipsland Sigrun Hjalmarsdottir Kværnø Jannes StolteAbstract
Measures designed to control erosion serve two purposes: on site (reduce soil loss) and off site (reduce sediment delivery to streams and lakes). While these objectives often coincide or at least are complementary, they could result in different priority areas when spatial planning is concerned. Prioritising for soil loss reduction at the field level will single out areas with high erosion risk. When sediment flux at the catchment scale is concerned, sediment pathways need to be identified in ex ante analyses of soil conservation plans. In Norway, different subsidy schemes are in place to reduce the influx of solutes and sediments to the freshwater system. Financial support is given to agronomic measures, the most important of which is reduced autumn tillage where areas with higher erosion risk receive higher subsidies. The objectives of this study are (1) to assess the use of an index of connectivity to estimate specific sediment yields, and (2) to test whether conservation measures taken in critical source areas are more effective than those taken at where erosion risk levels are the highest. Different modelling approaches are combined to assess soil loss at catchment level from sheet and gully erosion and soil losses through the drainage system. A calibration on two parameters gave reasonable results for annual soil loss. This model calibration was then used to quantify the effectiveness of three strategies for spatial prioritisation: according to hydrological connectivity, sheet erosion risk level and estimated specific sediment yield. The latter two strategies resulted in a maximum reduction in total soil loss due to reduced autumn tillage of 10%. Both model performance and the effectiveness of the different prioritisation strategies varied between the study catchments.