Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6–10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections.

To document

Abstract

Putative proton coupled di-peptide transporters, PTR2s, are found in filamentous fungi in different numbers and their function during fungal development and plant infection is unresolved. In Fusarium graminearum, the cause of head blight in cereals, we identified four putative PTR2 transporters (FgPTR2A-D). The genes did not cluster together in phylogenetic analyses and only FgPTR2A and FgPTR2C were able to complement a PTR2 deficient yeast mutant in uptake of di-peptides. All FgPTR2s are continuously expressed throughout the fungal lifecycle, although at different levels. In silico analyses of existing expression-data show that FgPTR2B is found at higher levels than the others in planta and during sexual development. Deletion mutants of FgPTR2A, FgPTR2C, and FgPTR2D had a higher production of deoxynivalenol (DON) and zearalenone and lower production of fusarielin H than the wild type. Perithecium development was reduced in these mutants but unaffected by deletion of FgPTR2B. Conidia production was reduced in the FgPTR2B mutant and unaffected by deletion of the other PTR2 transporters. Sexual development and secondary metabolite production are known to be linked at the regulatory level and the results suggest that PTR2s are active in nitrogen turnover and thereby influence signal processes.

To document

Abstract

Forest covers 37% of Norway’s combined area, almost half of which is made up by the tree species called Norway spruce. The rest consists of mostly pine and birch. It is therefore only natural that spruce forests should feature so heavily on black metal album covers and lyrics. The extreme music genre of black metal, as we think of it today, was birthed in Norway. Although it could be said that its place of origin was accidental, the subsequent use and appropriation of that place’s topographic features was not. Since its inception in the early nineties, the genre has spawned countless bands across the globe, many who take on its misanthropic ethos, but also a deep reverence and respect for nature. Within black metal’s aesthetic, photographs of ominous black tree lines and lyrics about disappearing into the depths of the forest abound – it is almost as if the spruce tree has become its own character in the mythology that black metal has become.

To document

Abstract

To degrade lignocellulose efficiently, lower termites rely on their digestive tract’s specific features (i.e., hysiological properties and enzymes) and on the network of symbiotic fauna harboured in their hindgut. This complex ecosystem, has different levels of symbiosis, and is a result of diverse co-evolutionary events and the singular social behaviour of termites. The partnership between termites and flagellate protists, together with prokaryotes, has been very successful because of their co-adaptative ability and efficacy in resolving the needs of the involved organisms: this tripartite symbiosis may have reached a physiologically stable, though dynamic, evolutionary equilibrium. The diversity of flagellate protists fauna associated with lower termites could be explained by a division of labour to accomplish the intricate process of lignocellulose digestion, and the ability to disrupt this function has potential use for termite control. Multi-level symbiosis strategy processes, or the cellulolytic capacity of flagellate protists, may lead to innovative pathways for other research areas with potential spin-offs for industrial and commercial use.

To document

Abstract

The aim of this study was to evaluate the natural occurrence of Beauveria spp. in soil, from infections in the stink bug Piezodorus guildinii, an important pest of common bean (Phaseolus vulgaris) and as endophytes in bean plant tissue. Twelve conventional and 12 organic common bean fields in the Villa Clara province, Cuba were sampled from September 2014 to April 2015. One hundred and fifty Beauveria isolates were obtained from soil samples, bean plant parts and stink bugs. The overall frequency of occurrence of Beauveria isolates in conventional fields (8.4%) was significantly lower than that in organic fields (23.6%). Beauveria were also obtained significantly more frequently from bean roots in organic fields (15.0%) compared to bean roots in conventional fields (3.3%). DNA sequencing of the intergenic Bloc region was performed for Beauveria species identification. All isolates where characterized as Beauveria bassiana (Balsamo-Crivelli) Vuillemin, and clustered with isolates of neotropical origin previously described as AFNEO_1. The Cuban B. bassiana isolates formed five clusters in the phylogeny. Isolates of two clusters originated from all four locations, organic and conventional fields, as well as soil, plants and stink bugs. Organic fields contained isolates of all five clusters while conventional fields only harbored isolates of the two most frequent ones. Mating type PCR assays revealed that mating type distribution was skewed, with MAT1/MAT2 proportion of 146/4, indicating limited potential for recombination. The present study is the first to report of B. bassiana as a naturally occurring endophyte in common bean. Further, it shows that B. bassiana occurs naturally in diverse environments of common bean fields, and constitutes a potential reservoir of natural enemies against pest insects particularly in organic fields.