Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Abstract

Galera, Matrigon 72SG and their parallel products are approved for weed control in oilseed rape every fourth years. In 2017, clopyralid, which is the active component in the herbicides, was found in Danish honey for the first time when honey from 2016 and 2017 was tested. The maximum acceptable residue level for clopyralid in honey has not been verified scientifically but is set at 0.05 mg/kg, which is not considered harmful to humans. However, 0.1 mg/kg releases a ban on sale of honey. In several of the tested honey samples from both years the amount of clopyralid was higher than 0.1 mg/kg. As nearly 50% of the Danish honey stems from nectar collected from rapeseed the use of clopyralid in oilseed rape poses a very serious economic problem for Danish beekeepers, and already in 2017, the sale of several spring honey lots was rejected. In 2019 and 2020, we tested the following hypotheses 1) nectar and pollen, collected from flowers of winter oilseed rape sprayed with clopyralid according to the regulations may contain clopyralid; 2) honey and pollen collected from beehives placed next to winter oilseed rape fields sprayed with clopyralid according to the regulations may contain clopyralid. Residues of clopyralid were found in all nectar, pollen and honey samples from treated plots and fields. In a large part of the samples, more than 0.1 mg clopyralid/kg was detected, which would have resulted in a ban on the sale of honey. The perspectives of the results are discussed.

To document

Abstract

Clopyralid is a systemic herbicide used in oilseed rape and other crops. It was found in Danish honey from 2016 in concentrations exceeding the maximum residue level (MRL) of 0.05 mg kg−1. About 50% of the Danish honey is based on nectar from winter oilseed rape. In 2019 and 2020, winter oilseed rape fields were sprayed with clopyralid just before the assigned spraying deadline. At flowering, nectar and pollen samples were collected and the content of clopyralid was measured. Honey and pollen samples were also collected from beehives next to ten conventional winter oilseed rape fields sprayed with clopyralid. Clopyralid was found in nectar and pollen from the experimental fields, and in honey and pollen from beehives next to the conventional fields. For most samples the content in nectar and honey exceeded the MRL. The concentrations found, may not pose any health risk for consumers, as the MRL is based on the original detection limit and not on toxicological tests. However, it can have a significant economical consequence for the beekeepers, who are not allowed to sell the honey if the concentration of clopyralid exceeds 0.1 mg kg−1. Reducing the acceptable applicable rate of clopyralid or implementing an earlier deadline for spraying of clopyralid may reduce the risk of contaminating bee food products. However, if it is not possible to obtain a satisfactory effect of clopyralid on the weed flora under these conditions, spraying with pesticides containing clopyralid should be restricted in winter oilseed rape. Determination of an MRL value based on toxicological tests might result in a higher value and make it acceptable selling the honey containing higher levels of clopyralid.

To document

Abstract

Seed production is an important element of weed population dynamics, and weed persistence relies upon the soil seed bank. In 2017 and 2018, we studied the relationship between the aboveground dry biomass of common weed species and their seed production. Weeds were selected randomly in the fields, and we surrounded the plants with a porous net to collect shed seeds during the growth season. Just before crop harvest, weeds were harvested, the plants’ dry weights were measured, and the number of seeds retained on the weeds was counted. A linear relationship between the biomass and the number of seeds produced was estimated. This relationship was not affected by year for Avena spica-venti, Chenopodium album, Galium aparine, or Persicaria maculosa. Therefore, the data of the two seasons were pooled and analysed together. For Alopecurus myosuroides, Anagallis arvensis, Capsella bursa-pastoris, Geranium molle, Polygonum aviculare, Silene noctiflora, Sonchus arvensis, Veronica persica, and Viola arvensis, the relationship varied significantly between the years. In 2017, the growing season was cold and wet, and the slope of the regression lines was less steep than in the dry season in 2018 for most species. Capsella bursa-pastoris was the most prolific seed producer with the steepest slope.

Abstract

Harvest Weed Seed Control (HWSC) systems are used to collect and/or kill weed seeds in the chaff fraction during grain harvest. While collecting chaff reduces the weed infestation in the following years, a new biomass feedstock is created. Chaff mainly consists of husk and straw. There is a potential energetic utilization of chaff. It can also be used as a material for construction (e.g., insulating boards, cardboard, bedding), soil improvement (e.g., mulch, mushroom compost) and agricultural use (e.g., weed growth inhibitor, animal diet). Using chaff directly is unfavorable because of low bulk density; therefore, compressing chaff into pellets optimizes its handling. We have assessed how pelletizing would affect germination of weed seeds bearing in the chaff if the collected chaff is pelletized for further utilization. To test this, we mixed original wheat chaff and fine wheat chaff (pretreated by sieving) with each of the weed species Tripleurospermum inodorum and Centarea cyanus seeds separately. Approximately 2000 seeds of each weed species were added to 2500 g of chaff (20 % moisture). Samples were pelletized using the Kahl Pelleting Press 14-175. Each treatment was replicated four times. Afterwards pelletized samples were spread evenly on the soil surface in 14 × 16 cm boxes and covered by a thin layer of soil/sand. Unpelletized chaff samples were used as control. Boxes were placed in greenhouse and watered from the bottom and seed germination was followed for a month. While on average 22 and 59 % seed germination of T. inodorum and C. cyanus were observed in wheat chaff control samples respectively, no weed seed germination was observed in pelletized fine and original wheat chaff samples. Consequently, we find that the pelletizing process of collected chaff destroys the weed seeds in it.

Abstract

Harvest weed seed control takes advantage of seed retention at maturity by collecting weed seeds as they pass through the harvester. We assessed the seed production and shedding pattern of common weed species in two wheat and two oat fields in Denmark. The aim was to evaluate the possibility of harvesting retained seeds on weeds at crop harvest by a combine harvester based on estimation of weeds seed retention. Before flowering, ten plants of each weed species were selected and surrounded by a seed trap comprising of a porous net. When the plants started shedding seeds, the seeds were collected from the traps and counted weekly until crop harvest. Just before crop harvest, the retained seeds on the plants were counted and the ratio of harvestable seeds and shed seeds during the growing season were determined. The seed production and shedding patterns varied between the species. In oat, Anagallis arvensis L., Capsella bursa-pastoris (L.) Medik., Chenopodium album L., Fallopia convolvulus (L.) Á. Löve, Geranium molle L., Persicaria maculosa Gray, Polygonum aviculare L., Silene noctiflora L., Sinapis arvensis L., Sonchus arvensis L., Spergula arvensis L., Stellaria media (L.) Vill.,Veronica persica Poir., and Viola arvensis Murray retained on average 61, 52, 67, 44, 58, 32, 59, 95, 67, 23, 45, 56, 51, and 33%, respectively, of their produced seeds at crop harvest. In wheat, Alopecurus myosuroides Huds. and Apera spica-venti (L.) P. Beauv. retained on average 34 and 33%, respectively, of their seeds at harvest. Silene noctiflora was classified as a good target for harvest weed seed control; A. myosuroides, A. spica-venti, C. bursa-pastoris, C. album, F. convolvulus, G. molle, P.maculosa, Sinapis arvensis, Sonchus arvensis, Spergula arvensis and V. arvensis were classified as intermediate targets; and A. arvensis, P. aviculare, S. media and V. persica were classified as poor targets. The research shows that there is a great potential to reduce the input of weed seeds to the soil seed bank by harvest weed seed control. Keywords: Harvest weed seed control; Soil seed bank ; Weed seed retention

To document

Abstract

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) was recorded for the first time in 2016 attacking maize fields in central and west Africa. Soon after, several other regions and countries have reported the pest in almost the entire sub-Saharan Africa. In the present study, we assumed that (i) a variety of alternative plant species host FAW, especially during maize off-season, (ii) a wide range of local parasitoids have adapted to FAW and (iii) parasitoid species composition and abundance vary across seasons. During a two-year survey (from June 2018 to January 2020), parasitoids and alternative host plants were identified from maize and vegetable production sites, along streams and lowlands, on garbage dumps and old maize fields in southern and partly in the central part of Benin during both maize growing- and off-season. A total of eleven new host plant species were reported for the first time, including Cymbopogon citratus (de Candolle) Stapf (cultivated lemon grass), Bulbostylis coleotricha (A. Richard) Clarke and Pennisetum macrourum von Trinius (wild). The survey revealed seven parasitoid species belonging to four families, namely Platygastridae, Braconidae, Ichneumonidae, and Tachinidae associated with FAW on maize and alternative host plants. The most abundant parasitoid species across seasons was the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). These findings demonstrate FAW capability to be active during the maize off-season in the selected agro-ecologies and provide baseline information for classical and augmentative biocontrol efforts.