Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Kim Viggo Paulsen Weiby Linda Årvik Margrete Eknæs Angela Schwarm Håvard Steinshamn K. A. Beauchemin Peter Lund Ingunn Schei Ingjerd DønnemAbstract
The aim of this study was to examine how silages from different grassland species and harvesting frequencies affect feed intake, milk production, and methane (CH4) emission in dairy cows. We hypothesized that cows consuming silages of more frequent harvest, grass species with greater organic matter digestibility and legumes with lower NDFom concentration would have greater silage dry matter intake and milk yield and thereby lower CH4 yield and intensity. Forty Norwegian Red cows were allocated to 5 treatments in a cyclic changeover design with 4 21-d periods (14 d of adaptation, 7 d of data collection). The 5 treatments evaluated were silages produced from timothy (Phleum pratense L.) in a 3-cut system (T3), timothy in a 2-cut system (T2), perennial ryegrass (Lolium perenne L.) in a 3-cut system (PR3), red clover (Trifolium pratense L.) in a 3-cut system (RC3) and a mix of T3 and RC3 (50:50 on DM basis) (T3/RC3). The treatments were prepared by mixing silages from each crop over the growing season, proportional to the harvested DM yield of each cut. Cows were offered the mixed silages ad libitum supplemented with a fixed level of concentrate. Gas emissions were measured using 2 Greenfeed units. Milk yield was recorded in the milking robot at each visit, and milk samples were collected at 3 consecutive milkings during the last 7 d of each period. Cows were weighed after each milking, and total-tract digestibility of each diet was estimated using acid insoluble ash as internal marker in fecal grab samples. The data were analyzed using the MIXED procedure of SAS with block, period and treatment as fixed effects and animal within block as random effect. Silage and total DMI did not differ between T3 and T2, but total DMI was lower for PR3 than for T3. There was a quadratic effect of increased proportion of red clover, with highest intakes of T3/RC3 and lower intakes of RC3 than of T3. Energy corrected milk (ECM) yield was lower for T2 than T3, and for PR3 than T3. There was a quadratic effect of increased proportion of red clover, with highest ECM yield in T3/RC3 and lower in RC3 than in T3. Organic matter digestibility was lower for T2 than T3, but it did not differ between T3 and PR3. Including red clover in the diet linearly decreased organic matter digestibility. Methane production (g/d) did not differ between T3 and T2, but CH4 intensity (g/kg ECM) was greater for T2 than for T3. There was no difference between T3 and PR3 for CH4 production but yield and intensity were greater for PR3 than T3. Including red clover in the diet linearly increased CH4 production, yield and intensity with greatest intensity in the 100% red clover diet. In conclusion, changing harvesting frequency for timothy from 2 to 3 harvests per year did not affect CH4 production or yield, but CH4 intensity was reduced. Replacing timothy with perennial ryegrass and increased inclusion rate of red clover both increased CH4 yield and intensity. Key words: enteric methane, timothy, red clover, perennial ryegrass, greenfeed system
Abstract
Manures are potentially both a source of nutrients for plants and a source of pollution. Manure produced depends on animal densities and type rather than plants need. Over time, this has enriched soils with P and organic N. The challenge is maximal nutrient recycling and minimal pollution from the manure used for plant production. To investigate the optimal seasonal distribution of manure, field experiments were carried out in 2022 and 2023 on grassland in three agricultural regions in Norway. Three distributions of cattle slurry at 30 kg P ha–1 were tested, with or without additional N fertilizer. These were compared with control treatments without slurry: no fertilizer, and compound NPK and NK fertilizers. Different distributions had little effect on grass yield and uptake of P and N. Applying a larger proportion of manure in spring increased grass yield, while additional mineral N fertilizer significantly increased yield but reduced N use efficiency. Slurry alone gave a P surplus, while added mineral N fertilizer allowed a net mining of P. There seems therefore to be a trade-off regarding whether the efficient use of N or P is to be prioritized. The decision should likely depend on required yields as well as local pollution risks.
Abstract
No abstract has been registered
Abstract
Eucalyptus plantations are a notable source of income for smallholders and private landowners in Thailand. The main uses of eucalyptus are for energy purposes and as pulpwood, sawn timber, and veneer. Among private eucalyptus forest owners there is a need for decision support tools that can help in optimizing tree bucking, according to the available properties of the site and bucking patterns. The precise characterization of plantation properties is key to delivering appropriate timber assortment to markets and optimizing timber value. Our study has developed and tested dynamic and linear programming models for optimizing the tree bucking of eucalyptus trees. To achieve this, tree taper curves for use in volumetric models were defined for optimization. Our results indicate that both the tree spacing and the increment of diameter of breast height are significant factors when estimating profitability. The income would be significantly higher if bucking timber in different assortments were used, instead of the current approach of selling as bulk based on mass. For implementation, we created a free mobile application for android phones (EVO—eucalyptus value chain optimization) to utilize the study results at the grass root-level.
Abstract
Lingonberry (Vaccinium vitis-idaea L.) grows in a range of nature types in the boreal zone, and understanding factors affecting the abundance of the plant, as well as mapping its spatial distribution, is important. The abundance of the species can be an indicator of ecosystem changes, and lingonberry can also be a source for commercial utilisation of berry resources. Using country-wide data from 6404 field plots of the Norwegian national forest inventory (NFI), we modelled the relationship between lingonberry cover and airborne laser scanning (ALS) and satellite metrics and bioclimatic variables describing the forest structure, terrain, soil properties and climate using a generalised mixed-effects model with a quasipoisson distribution. The validation carried out with an independent set of 2124 NFI plots indicated no obvious bias in predictions. The most important predictors were found to be interactions between dominant tree species, stand basal area and latitude, as well as the reflectance in the near-infrared band from Sentinel-2 satellite imagery, the dominant height based on the ALS variable and the long-term mean summer (June–August) temperature. The results provide an indicator of the effects of global warming, as well as the possibility of giving forest management prescriptions that favour lingonberry and locating the most abundant lingonberry sites in Norwegian forests.
Abstract
No abstract has been registered
Abstract
Soil erosion is a significant environmental issue in most mountainous areas and is further exacerbated due to ongoing climatic changes and anthropogenic activities. Soil erosion not only triggers natural disasters like landslides but also degrades the fertile topsoil layers. Therefore, modeling and evaluation of soil erosion in mountainous areas and river basins are highly important. The Uma Oya River Basin (UORB), Sri Lanka is an area with rich biodiversity and is also important for agricultural production. Moreover, this area is frequently discussed due to the ongoing developments of the Uma Oya Project. This paper presents a comprehensive evaluation of soil erosion in the UORB and results are compared for two decades from 2000 to 2020. The Revised Universal Soil Loss Equation (RUSLE) was used to determine the annual soil erosion rates. In addition, the spatial-temporal variation of land use and land cover was assessed in the UORB. Results revealed that extreme soil erosion scenarios occur when forests and other vegetation lands are converted to agricultural lands and farmlands. We found that soil loss in the area largely happened due to steep slopes, reduction of vegetation and forest covers, and growth of cultivation lands. Erosion-prone areas in the river basin are identified and conservation strategies are discussed. In addition, the impact of the ongoing climate change on the UORB is highlighted.
Abstract
No abstract has been registered
Authors
Xabier Díaz de Otálora Agustín del Prado Federico Dragoni Lorraine Balaine Guillermo Pardo Wilfried Winiwarter Anna Sandrucci Giorgio Ragaglini Tina Kabelitz Marek Kieronczyk Grete H. M. Jørgensen Fernando Estellés Barbara AmonAbstract
Understanding the environmental consequences associated with dairy cattle production systems is crucial for the implementation of targeted strategies for emission reduction. However, few studies have modelled the effect of tailored emission mitigation options across key European dairy production systems. Here, we assess the single and combined effect of six emission mitigation practises on selected case studies across Europe through the Sustainable and Integrated Management System for Dairy Production model. This semi-mechanistic model accounts for the interacting flows from a whole-farm perspective simulating the environmental losses in response to different management strategies and site-specific conditions. The results show how reducing the crude protein content of the purchased fraction of the diet was an adequate strategy to reduce the greenhouse gas and nitrogen emission intensity in all systems. Furthermore, implementing an anaerobic digestion plant reduced the greenhouse gas emissions in all tested case studies while increasing the nitrogen emissions intensity, particularly when slurry was applied using broadcast. Regarding the productivity increase, contrasting effects were observed amongst the case studies modelled. Moreover, shallow slurry injection effectively mitigated the intensity of nitrogen losses from the fields due to strong reductions in ammonia volatilisation. When substituting urea with ammonium nitrate as mineral fertiliser, site-specific conditions affected the mitigation potential observed, discouraging its application on sandy-loam soils. Rigid slurry covers effectively reduced the storage-related nitrogen emissions intensity while showing a minor effect on total greenhouse gas emission intensity. In addition, our results provide novel evidence regarding the advantages of cumulative implementation of adapted mitigation options to offset the negative trade-offs of single-option applications (i.e. slurry covers or anaerobic digestion and slurry injection). Through this study, we contribute to a better understanding of the effect of emission mitigation options across dairy production systems in Europe, thus facilitating the adoption of tailored and context-specific emission reduction strategies.
Authors
Ondrej Lenz Igor Koloniuk Tatiana Sarkisova Radek Cmejla Lucie Valentova Martina Rejlova Jiri Sedlak Dag-Ragnar Blystad Bijaya Sapkota Zhibo Hamborg Jiunn Luh Tan Rostislav Zemek Pribylová Jaroslava Jana FranovaAbstract
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus.