Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Nitrogen (N) and phosphorus (P) losses via agricultural drainage water have negative impacts on receiving water bodies and large-scale programmes to reduce nutrient losses have been established in the Nordic and Baltic countries, together with agricultural catchment monitoring programmes. This study evaluated time series (9–40 years) of data from 34 selected Nordic-Baltic catchments for spatial and temporal variations in area-specific water discharge (mm) and in concentrations and transport of total nitrogen (TN) and total phosphorus (TP). Water discharge from the catchments varied from 125 mm (Denmark) to > 1000 mm (Norway). Catchments with low TN concentrations (≤3 mg L-1) were dominated by clay or grass leys or were undrained with reduction of nitrate (NO3) in shallow groundwater. Catchments with high TN concentrations (≥10 mg L-1) had loams and cereal crops. TP concentrations were highest (≥0.45 mg L-1) in catchments with erosive soils, relatively high water discharge and cereal crops, and lowest (≤0.07 mg L-1) in catchments with permeable soils. Generalised additive mixed model (GAMM) analysis of time series of transport and flow-weighted concentrations of TN and TP for temporal patterns revealed decreases in TN concentrations in seven catchments and increases in eight, while four had periods with opposing trends. TN concentrations decreased in Denmark and Sweden in 1990–2010, following introduction of mitigation programmes. TP concentrations decreased in eight catchments and increased in six, while one showed opposing trends. Decreases in TP coincided with improved P balance in catchments with sand and loam. To further reduce N and P losses, a tailored set of mitigation measures is needed for each combination of soil, climate, geohydrology and agricultural production. Intensive monitoring of small catchments can reveal how N and P losses relate to natural conditions and to changes in agricultural production.

To document

Abstract

The mineralization of nitrogen in apple orchard soil will increase the soil supply. An incubation study to test the soil potential and the validity of analytical methods was conducted at 3, 8, 15, and 20 °C for up to 128 days on soils from western and south-eastern Norway. Soils with the highest pH showed the highest mineralization. The mineralization increased with increasing temperature and time, but start-up N reduced mineralization. The mineralization cannot be estimated from standard soil chemical parameters because the different C/N ratio indicates organic material of different origin and quality. The increase in NO3-N started very quickly and ranged from 17 to 182% and 12 to 64% after 8 days at 3 °C and 20 °C, respectively. There was no correlation between total N in the soil and the amount of mineralized N. On average, the mineralization increased by 5–7% for a change of 1 °C in the interval from 8 to 15 °C in the soil. The chemical extraction method using heated KCl correlated well with the mineralization data. On average, the chemical method estimated 30 kg N ha−1, which corresponded to 0.48% of total N. Recommendations for N fertilization based on total N in the soil overestimate the contribution of plant-available N in most cases.

Abstract

A process-based model was developed to predict dry matter yields and amounts of harvested nitrogen in conventionally cropped grassland fields, accounting for within-field variation by a node network design and utilizing remotely sensed information from a drone-borne system for increased accuracy. The model, named NORNE, was kept as simple as possible regarding required input variables, but with sufficient complexity to handle central processes and minimize prediction errors. The inputs comprised weather data, soil information, management data related to fertilization, and a visual estimate of clover proportion in the aboveground biomass. A sensitivity analysis was included to apportioning variation in dry matter yield outputs to variation in model parameter settings. Using default parameter values from the literature, the model was evaluated on data from a two-year study (2016–2017, 264 research plots in total each year) conducted at two locations in Norway (i.e. in South-East and in Central Norway) with contrasting climatic conditions and with internal variation in soil characteristics. The results showed that the model could estimate dry matter yields with a relatively high accuracy without any corrections based on remote sensing, compared with published results from comparable model studies. To further improve the results, the model was calibrated shortly before harvest, using predictions of above ground dry matter biomass obtained from a drone-borne remote sensing system. The only parameters which were hereby adjusted in the NORNE model were the starting values of nitrogen content in soil (first cut) and the plant available water capacity (second cut). The calibration based on the remotely sensed information improved the predictive performance of the model significantly. At first cut, the root mean square error (RMSE) of dry matter yield prediction was reduced by 20% to a mean value of 58 g m−2, corresponding to a relative value (rRMSE) of 0.12. For the second cut, the RMSE decreased by 13% to 66 g m−2 (rRMSE: 0.18). The model was also evaluated in terms of the predictions of amounts of nitrogen in the harvested crop. Here, the calibration reduced the RMSE of the first cut by 38%, obtaining a mean RMSE value of 2.1 g N m−2 (rRMSE: 0.28). For the second cut, the RMSE reduction for simulated harvested N was 16%, corresponding to a mean RMSE value of 2.3 g N m−2 (rRMSE: 0.33). The large improvements in model accuracy for simulated dry matter and nitrogen yields obtained through calibration by utilizing remotely sensed information, indicate the importance of considering spatial variability when applying models under Nordic conditions, both for yield predictions and for decision support for nitrogen application.

Abstract

An expert workshop on C and N interactions was held online 6 – 7/11 2023, within project Kvävebegränsningar för kolbindning i skandinaviska skogar/Nitrogen constraints to carbon sequestration in Scandinavian forests, financed by the Nordic Working Group for Climate and Air (NKL). The workshop was organized in two half-day sessions. Sweden, Finland, Norway and Denmark were represented by experts involved in national reporting to the UNECE Air Convention (CLRTAP) and to the UN Climate convention (UNFCCC). This workshop report was prepared by the workshop organizers at IVL Swedish Environmental Research Institute, with contributions from all workshop participants.