Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Lorène Julia Marchand Inge Dox Jožica Gričar Peter Prislan Sebastien Leys Jan Van den Bulcke Patrick Fonti Holger Lange Erik Matthysen Josep Peñuelas Paolo Zuccarini Matteo CampioliSammendrag
We explored the inter-individual variability in bud-burst and its potential drivers, in homogeneous mature stands of temperate deciduous trees. Phenological observations of leaves and wood formation were performed weekly from summer 2017 to summer 2018 for pedunculate oak, European beech and silver birch in Belgium. The variability of bud-burst was correlated to previous’ year autumn phenology (i.e. the onset of leaf senescence and the cessation of wood formation) and tree size but with important differences among species. In fact, variability of bud-burst was primarily related to onset of leaf senescence, cessation of wood formation and tree height for oak, beech and birch, respectively. The inter-individual variability of onset of leaf senescence was not related to the tree characteristics considered and was much larger than the inter-individual variability in bud-burst. Multi-species multivariate models could explain up to 66% of the bud-burst variability. These findings represent an important advance in our fundamental understanding and modelling of phenology and tree functioning of deciduous tree species.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anna Katharina Pilsbacher Bente Lindgård Rigmor Reiersen Victoria Gonzalez Kari Anne BråthenSammendrag
1. Altered species composition caused by environmental and climatic change can affect the transfer of plant residues among communities. Whereas transferred residues are typically considered a resource in recipient systems, residues of allelopathic species may instead cause interference. 2. Evergreen dwarf shrubs, specifically the allelopathic species Empetrum nigrum are increasing in abundance in response to a warming climate. Empetrum has small, evergreen leaves that can be transferred to other communities when withered and lost from the plant. 3. We hypothesize that Empetrum can have allelopathic effects in the recipient communities of the withered leaves. We call this allochthonous allelopathy as opposed to autochthonous allelopathy, which is well documented in communities where the plant grows. 4. We measured influx of allochthonous Empetrum leaves onto snow-covered snowbeds, where they are easily identified within the debris. Next, we compared the bioactivity of allochthonous withered leaves with that of green Empetrum leaves. Finally, we conducted an experiment testing the germination and seedling growth of 10 tundra species in snowbed soil supplemented with no (control) and three densities of allochthonous Empetrum leaves. 5. We found Empetrum leaves to be common on the snow cover of snowbeds. We found Empetrum leaves collected on snowbeds to be as bioactive as green leaves. Finally, we found forb species to have reduced germination and all 10 species to have delayed seedling development when growing in snowbed soil supplemented with withered Empetrum leaves. Seedlings under the control treatment were 2.3 times longer and had 3.2 times more leaves in comparison to seedlings grown under the strongest allochthonous leaf treatment. 6. Results from our study imply that Empetrum is allelopathic in recipient systems of its allochthonous leaves. The abundant nature of Empetrum in the tundra suggests that allochthonous allelopathy is a common phenomenon, causing biotic stress in snowbeds and potentially other parts of the tundra. Exemplifying the ability of a plant to interfere in neighbouring communities, our study demonstrates a plant trait that may provide insight to other study systems.